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Abstract

This dissertation introduces the concept of Fully Analog Artificial Neural Net-
works (FAANNs) capable of processing signals directly from electrical sensors.
One of the research motives is to improve measurement accuracy with respect
to sensor degradation and changes in environmental conditions. The second
motive represents the ability to derive non-measured physical quantities depen-
dent on measured ones, which is especially useful when the quantity is difficult
to ascertain, for instance, due to a lengthy and costly chemical process.

Therefore, this work introduces a new design of a fully analog learning pro-
cess based on the backpropagation algorithm using gradient descent, which re-
mains an open problem. It is a recently discussed problem due to the paralleliza-
tion of computations which thus increases the learning speed. The proposed
structure circumvents the von Neumann bottleneck and avoids limitations asso-
ciated with sampling, synchronization signals, and clock signal control, enabling
real-time learning even for high-speed systems.

The last part of the work focuses on the practical application of FAANNs and
thus demonstrates their potential. It is a fully analog adaptive high-frequency
filter using the proposed neural networks in combination with a filter bank.
Subsequent validation and analysis of the properties of this filter using electrical
model behavior simulations explores the effectiveness of real-time adaptation.

Keywords: fully analog, neural network, real-time learning, backpropagation,
neuromorphic, adaptive filter, analog filter, filter bank, high-speed.
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Abstrakt

Tato disertační práce představuje koncept Plně Analogových Umělých Neu-
ronových Sítí (FAANN), které jsou schopny zpracovávat signály přímo z elek-
trických senzorů. Jedním z motivů výzkumu je zlepšit přesnost měření s ohledem
na degradaci senzorů a změny okolních podmínek. Druhý představuje možnost
odvození neměřené fyzikální veličiny, která je závislá na těch měřených, což
je obzvláště užitečné, když je velikost požadované veličiny obtížně zjistitelná,
například kvůli dlouhému a nákladnému chemickému procesu.

Tato práce proto přichází s novým návrhem plně analogového učícího se pro-
cesu založeného na algoritmu zpětného šíření pomocí gradientního sestupu,
který stále zůstává otevřeným problémem. Jedná se o problém v poslední době
velmi diskutovaný z důvodu paralelizace výpočtů a tím zvýšení rychlosti učení.
Navrhovaná struktura obchází von Neumannův bottleneck a také se vyhýbá
omezením spojeným se vzorkováním, synchronizačními signály a řízením hodi-
nových signálů, což umožňuje učení v reálném čase i v případě velmi rychlých
systémů.

V poslední části se práce zaměřuje na praktické využití FAANN a demon-
struje tak jejich potenciál. Jedná se o plně analogový adaptivní vysokofrekvenční
filtr využívající navrhovaných neuronových sítí v kombinaci s bankou filtrů.
Následná validace a analýza vlastností tohoto filtru pomocí simulací elektrického
modelu zkoumá efektivitu adaptace v reálném čase.

Klíčová slova: plně analogový, neuronová síť, učení v reálném čase, zpětné
šíření, neuromorfní, adaptivní filtr, analogový filtr, banka filtrů, vysokorychlostní.
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Chapter 1

Introduction

Artificial Neural Networks (ANNs) have been created based on biological neu-
ral networks in the human brain. The concept of artificial neural networks
originated in the mid-20th century when scientists such as Warren McCulloch
and Walter Pitts investigated the way neural networks work in the brain. In
1943, they published a paper titled "A logical calculus of the ideas immanent in
nervous activity", in which they described the essential functions of biological
neurons and proposed a model of an artificial neuron [1]. This model became
the basis for the development of artificial neural networks.

In the 1950s and 1960s, research on artificial neural networks continued to
develop, and the first neural network learning algorithms were developed [2].
However, the limited computing power of computers at the time hampered the
development of these networks [3]. In the 1980s, research on artificial neural
networks intensified due to advances in parallel computing and the development
of new learning algorithms [4]. The first commercial applications of artificial
neural networks were also developed at this time, for example, for handwriting
recognition and fraud detection [5]. In the 1990s, research on artificial neural
networks slowed down as these networks proved to have several limitations,
such as slow convergence, susceptibility to overtraining, and inability to explain
results [6]. In recent years, research on artificial neural networks has picked up
again, as these networks have been shown to have great potential for solving
complex tasks such as image recognition [7], natural language [8, 9], and driving
autonomous vehicles [10].

Therefore, an artificial neural network is a mathematical model inspired by
biological neurons used to solve various machine-learning problems, especially
for regression and classification tasks [11, 12]. This mathematical model consists
of units called "artificial neurons" that are connected by weighted connections.
Each artificial neuron receives input data, which is weighted and passed to
an activation function that computes the output of the neuron. The neuron’s
output is then passed on to other neurons as input, or it is an output of the entire
neural network. The learning of this neural network is based on changing the

1
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weights. These are adjusted by various algorithms so that the network output
corresponds to the desired output and thus achieves the correct interpretation
of the input data [12, 13, 14].

Artificial neural networks are used in many different fields, such as:

Image processing: classification, segmenting, and recognizing objects in
an image [7, 15].

Speech processing: speech recognition and speech synthesis [16].

Language translation: machine translation, multilingual translation, con-
textual understanding, domain-specific translation [9, 17].

Fraud detection: detecting fraudulent transactions and identifying crimi-
nals [18].

Driving autonomous vehicles: detecting obstacles on the road and plan
the best route for travel [10].

Financial market forecasting: predicting the prices of stocks and other
financial instruments [19].

Weather forecasting: more accurate weather forecasts and warnings of
extreme weather conditions [20].

Robotics: controlling industrial robots and creating robotic prostheses [21].

Medicine: analysis of medical images, diagnosing diseases, the detection of
drug interactions, developing new drugs, or for personalized medicine [22,
23].

Due to their impressive results, ANNs are gaining popularity. They are being
used to solve an increasing number of complex problems and are expected to
play an increasingly important role in various aspects of our lives [11, 17].

At the same time, more and more different types of ANNs are being devel-
oped, differing in their architecture, each with its specific characteristics and
applications [11, 20, 24, 25]. Here are some of the most well-known types of
artificial neural networks and their focus:

Perceptron: One of the simplest neural networks used for binary data
classification. Its architecture consists of only one neuron [2].

Feedforward Neural Network (FNN): The most basic and most widely
used type of neural network. It is also known as a unidirectional neural
network. The model consists of one input layer, one or more hidden layers,
and one output layer [26].

2
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Convolutional Neural Network (CNN): Designed to process image data
and have the ability to detect and classify objects in an image. It uses
convolutional layers that can detect different image patterns [15, 27, 28, 9].

Recurrent Neural Network (RNN): Designed to process data sequences
such as text or audio. It has the ability to retain state over time and
is used, for example, for prediction, text generation, or speech recogni-
tion [29, 19, 20].

Autoencoder: Designed for learning compact representations of input
data. It is used, for example, for data dimensionality reduction, image
recognition, text translation, or data analysis [30, 31].

Almost all modern ANNs are computed based on the von Neumann archi-
tecture, which allows efficient implementation of algorithms for a wide range of
problems. In this architecture, the computer’s memory is used to store both
data and instructions while the Central Processing Unit (CPU) fetches them
sequentially. The speed of accessing data and instructions is limited by memory
bandwidth and memory bus speed, which leads to inefficiency and performance
limitations because the CPU spends a significant amount of time waiting for
data and instructions. This phenomenon is known as the "von Neumann bot-
tleneck" [32, 33, 34]. Therefore, in recent years, increasing attention has been
paid to developing hardware implementations of ANNs that are able to perform
computations faster and more efficiently than conventional CPUs [35, 36, 37].

One approach is the use of Graphics Processing Units (GPUs), which are
specialized processors designed for graphics processing, but can also be used for
training and testing neural networks. GPUs are capable of parallel computation
and have greater computational capacity than CPUs, allowing larger complex
networks to be trained and tested. They can achieve speed-ups in the teens,
but they are not regarded as cost-effective [27, 28].

Another approach is to use specialized chips developed for computing ten-
sors, Tensor Processing Units (TPUs), which are the cornerstone of ANNs.
TPUs feature high-speed and energy efficiency, which can be up to 15 times
faster than conventional GPUs and consume up to 30 times less power. The TPU
architecture is designed to enable efficient real-time forward processing of large
datasets [38, 36]. Similar chips can already be found in today’s mobile phones
used for image and voice processing. Similarly, specialized Field-Programmable
Gate Arrays (FPGAs) are in the pipeline, which are programmable circuits that
can be used to create specialized hardware architectures for neural networks [24].

However, as the popularity of ANNs grows, so does the scale and complexity
of the problems, leading to an increase in the size of the ANNs needed to solve
them [12, 15]. The size of networks is directly related to the computation time
and energy consumed, which becomes a limiting factor for their real-time appli-
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cations [39]. It is especially problematic for ANN problems involving concept
drift, which is a phenomenon that describes a change in the distribution of data
over time. Many factors, such as environmental changes, sensor degradation,
user preferences change, or new technology developments, can cause concept
drift [40, 41, 42]. If the distribution of data changes so much that the machine
learning model is no longer able to accurately predict outputs for the new data,
the model becomes invalid [43]. These problems occur, for example, in Internet
of Things (IoT), real-time image recognition, and antenna signal processing.

Developers are working on creating specialized chips to address these prob-
lems. These chips, called Application-Specific Integrated Circuits (ASICs), are
designed for specific applications. Neural networks done by ASICs offer much
faster and more power-efficient performance compared to FPGAs, but they are
more expensive to develop and manufacture [37]. These specialized chips often
operate using a continuous signal, further increasing computation speed and
reducing power consumption; such are known as Analog Artificial Neural Net-
works (AANNs) [34, 44]. However, the actual training of the models loaded onto
these devices is primarily done using the traditional von Neumann architecture,
as mentioned earlier.

The exception is often found in highly specialized neuromorphic computing.
The aim is to develop efficient hardware and software systems that can process
information, learn, and adapt, much like biological neural systems. Neuromor-
phic systems frequently employ specialized architectures and components for
complex tasks, delivering high efficiency and low power consumption. These
systems can consist of both analog and digital elements. They utilize circuits
or processors specifically designed to mimic biological neurons and synapses,
creating artificial neural networks for data processing, decision-making, and
learning [45, 46, 47, 48].

The increasing use of the IoT and the necessity to process signals from more
complex sensors like microphones, cameras, or antennas drives the develop-
ment of edge computing architectures near sensors [49, 50, 51]. The significant
computational power in this area motivates the design of hardware capable of
analyzing data from nearby sensors without being affected by the von Neu-
mann bottleneck. This is where analog artificial neural networks come into
play, as they are not highly specialized and can process data in real-time with
low power consumption. Training these networks requires a learning algorithm
such as backpropagation using gradient descent [14] to implement real-time
training hardware. However, a fully analog training process based on the back-
propagation learning algorithm is still not fully developed and is still an open
problem [52, 53].

By incorporating an analog learning algorithm, it becomes possible to tran-
sition from standalone software or FPGA units to an on-chip analog train-
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ing implementation, resulting in a fully hardware-based artificial neural net-
work. While this may decrease the flexibility of the structure, it also provides
a significant acceleration in the training process of the artificial neural net-
work [33, 44, 48, 54].

Many on-chip learning process designs for both neuromorphic systems and
analog neural networks rely on clock control. This approach enables a more
flexible structure but slows down the learning process or makes it impossible
to process unsampled signals directly from analog sensors [50, 51]. Embrac-
ing a fully analog learning process offers several benefits. First, it reduces the
need for data conversion between analog and digital domains, saving time and
energy. Second, an analog implementation allows continuous learning directly
from analog sensor data, facilitating real-time adaptation of the concept drift in
real-time applications. Lastly, fully analog learning leads to fully parallel signal
processing, yielding significant speed-up and power savings compared to digital
implementations.

For the above reasons, this dissertation presents and verifies a new concept of
a Fully Analog Artificial Neural Network (FAANN) that implements a circuit-
based solution for training an artificial neural network. The proposed concept
is inspired by the backpropagation algorithm and is based on gradient descent.
The goal is to develop a hardware ANN that can effectively address the lim-
itations of the von Neumann architecture and avoids synchronization signals,
making the concept fully analog and fully parallel. It significantly improves
computation speed, power consumption, and real-time usability for tasks such
as IoT applications, image processing, and high-frequency signal control.
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Chapter 2

Objectives of the dissertation

This dissertation focuses on addressing several objectives to develop and validate
a novel concept for processing signals from various electronic sensors.

1. The primary objective is to design a new Fully Analog Artificial Neural
Network (FAANN) concept for processing signals from an array of differ-
ent electronic sensors. This concept should bypass von Neumann’s Bot-
tleneck and avoid any synchronization signals, enabling real-time learning
capabilities.

2. The next objective is to validate the functionality of the proposed structure
by analysis through an electrical behavioral model. It should ensure that
the proposed structure will be able to learn and with sufficient speed.
Additionally, it will analyze the fundamental behavior of this concept and
compare it to traditional ANN approaches.

3. Another objective is to explore the practical applications of the FAANN
system by utilizing it to develop an adaptive frequency filter. The adaptive
filter should be designed to operate at higher frequencies to show the
potential of FAANN.

4. The final objective is to verify the functionality of the designed adaptive
filter concept, which is based on FAANN, through additional simulations,
particularly considering their configurability and adaptability. These sim-
ulations should describe the fundamental advantages and disadvantages.
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Chapter 3

State of the art

Nowadays, Artificial Neural Networks (ANNs) have become a crucial part of
many diverse fields due to their ability to learn, adapt, and solve complex prob-
lems. They are designed to mimic the functioning of the human brain, which
consists of interconnected processing nodes, also known as neurons [11].

A significant development in recent years has been the advent of deep learn-
ing, a subset of machine learning that utilizes ANNs with many hidden lay-
ers [7, 9, 16, 21, 35]. Specifically, Convolutional Neural Networks (CNNs) have
triggered image and video processing breakthroughs. These networks use convo-
lutional layers to extract features from images and videos more efficiently than
traditional methods [15, 34, 55, 56].

A promising area is the development of capsule networks, a concept intro-
duced as an alternative to CNNs [31]. These networks are capable of processing
spatial relationships between objects in an image, potentially surpassing some
of the limitations of CNNs. Although still in the experimental stage, they could
possibly bring about a revolution in image recognition tasks [57].

On the other hand, Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) have proven to be exceptionally promising for sequence pre-
diction problems, such as natural language processing or time series predic-
tion [8, 58]. These networks have an internal state that allows them to remem-
ber previous inputs in the current decision-making process. Thanks to their
ability to handle time-dynamic behavior, RNN, and LSTM have become key in
sequence-based tasks [29]. Examples of RNN and LSTM usage include weather
forecasting and even stock price prediction [19, 20].

A significant milestone in the field of ANNs is the emergence of transformers.
Unlike traditional RNNs or CNNs, transformers rely solely on self-attention
mechanisms to capture dependencies between different positions in a sequence.
This attention mechanism allows transformers to efficiently process long-range
dependencies and contextual information without needing sequential processing,
making them highly parallelizable and faster to train [59, 60].

Transformers have paved the way for novel architectures such as the Generative
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Pre-trained Transformer (GPT) models, widely used for text generation tasks [17].
GPT-4, so far the largest model in the series, has demonstrated impressive lan-
guage generation capabilities, producing coherent and contextually relevant text
across a wide range of prompts. It is currently being explored for various appli-
cations, such as its benefits and risks for medical applications [22].

With the arrival of quantum computers, Quantum Neural Networks (QNNs)
have emerged as a potential future direction for ANNs. QNNs leverage quan-
tum phenomena to enhance the speed and capacity of traditional neural net-
works. Although they are only in the initial phase, they could lead to significant
progress in this field, but substantial issues persist regarding hardware stability
and error correction [25, 61, 62].

ANNs have several advantages that make them suitable for many machine-
learning tasks [11]. Some of these include:

Noise processing: ANNs are highly robust and can handle noise in input
data. It makes them suitable for real-world situations where data may not
be clean or may contain errors [12, 14].

Nonlinearity: ANNs are capable of modeling complex nonlinear relation-
ships, which can be critical in many real-world applications where rela-
tionships between variables are not straightforward [63].

Generalization: After training, ANNs can generalize learned examples to
new ones. This ability makes them useful for image recognition or natural
language processing tasks [7, 8].

Despite remarkable progress, there are still persisting issues in the field of
ANNs. Some of these include:

Lack of transparency or the black box problem: It is often difficult to
understand how ANNs make their decisions, as this process can be very
complex and opaque. This lack of interpretability can be problematic in
situations where it is necessary to understand the decision-making process,
such as in healthcare or legal environments [64].

Overfitting: ANNs, particularly deep neural networks, are prone to over-
fitting, especially when working with a small dataset. Overfitting means
that the network may perform well on training data but poorly on new,
unseen data [65].

Architecture design complexity: ANNs are usually complex architectures,
and their design requires considerable effort and expertise. This is cur-
rently being addressed by Neural Architecture Search (NAS) algorithms,
which automate the design of artificial neural networks and represent a
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new development in ANN technology. NAS algorithms attempt to cre-
ate models that outperform human-designed models, which would signifi-
cantly accelerate the model development process [66].

Training time and computational resources: Training ANNs can require
substantial amounts of time and computational resources, especially in the
case of large datasets or complex architectures. Therefore, they are less
suitable for smaller projects or organizations with limited computational
resources [32, 43, 59, 60, 67].

Consequently, much recent research is focused on addressing these problems.
For example, various techniques such as quantization, compression, and accel-
eration are being explored in the area of computational resources [35, 68, 69].

Neural network accelerators have recently become a central focus of hard-
ware development that facilitates the computational demands of ANNs. These
specialized hardware accelerators, designed to speed up the execution of neural
network tasks, have significantly increased the speed and efficiency of training
and deploying ANNs [33, 35, 70].

Field-Programmable Gate Arrays (FPGAs) and Application-Specific Inte-
grated Circuits (ASICs) are two types of neural network accelerators widely
used due to their efficient energy use and high-performance capabilities. FPGAs
provide a flexible architecture that allows for reprogramming the hardware best
to suit the specific needs of a neural network model. On the other hand, ASICs
are specifically designed for specific tasks, leading to significantly higher perfor-
mance compared to more general hardware. However, ASICs lack the flexibility
of FPGAs as they cannot be reprogrammed after production [24, 37].

Graphics Processing Units (GPUs) also play an important role in accelerat-
ing neural networks, thanks to their highly parallel structure suitable for matrix
and vector operations used in ANNs. Graphics processors, originally designed
to accelerate computer graphics, have now found widespread use in the field
of Artificial Intelligence (AI). At the forefront of this shift are GPUs from
companies like NVIDIA, whose CUDA software platform has made it easier for
developers to utilize the parallel computing power of GPUs [27, 28, 37].

Another example of a specialized neural network accelerator is the Tensor
Processing Unit (TPU). TPUs are Google’s custom-built ASICs specifically de-
signed to accelerate machine learning tasks. They have been optimized for Ten-
sorFlow, Google’s open-source machine learning framework. With their unique
architecture and design, TPUs are able to execute large-scale tensor computa-
tions efficiently, resulting in significantly faster processing times for tasks such
as training and inference in neural networks [35, 36, 38].

Despite the substantial improvements by neural network accelerators, chal-
lenges still exist. Active research areas include energy efficiency, computational
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power, cost, and the ability to keep up with the rapidly changing environ-
ment [40, 43]. Given the pivotal role of neural networks in a wide range of
applications, from image recognition to natural language processing, progress
in the field of neural network accelerators is expected to continue rapidly in the
coming years [35].

Real-time learning in neural networks continues to be a thriving field of
research and development, with applications expanding beyond autonomous
vehicles, robotic systems, and dynamic recommendation systems. The ability
of neural networks to adapt their knowledge on-the-fly, learning from new data
as it becomes available, without requiring full retraining, is a cornerstone of
modern AI systems [10, 21, 39, 38].

Traditionally, most neural network models are trained on a static dataset
and then deployed for inference, with no ability to learn from new data. The
learned model is then rendered obsolete and non-valid. However, as the demand
for real-time learning capability has grown, so has the suite of methods designed
to achieve it [40, 41, 42].

One of the approaches to this is federated learning, where a model is trained
across multiple decentralized edge devices, learning from new data as it arrives.
This approach not only facilitates real-time learning but also respects the privacy
of the data, as the raw data does not need to leave the device. It has proven
particularly useful in applications like personalized recommendation systems
and healthcare analytics, where data privacy is paramount [71].

Transfer learning is another technique that bolsters real-time learning, where
a pre-trained model is used and fine-tuned for a different but related task. This
approach can expedite the learning process, especially in real-time scenarios
where a model can leverage prior knowledge to make better predictions or deci-
sions. It is especially prevalent in natural language processing tasks and image
classification problems [72].

Ensemble learning is another way to enhance real-time learning. In this
approach, multiple models or versions of a model contribute to the final predic-
tion. It can increase the robustness and generalizability of the model, making
it better-equipped to handle the dynamic nature of real-time data [73].

Continuous learning, also known as lifelong learning or incremental learn-
ing, is an approach in machine learning where models are designed to acquire
new knowledge, adapt to changing data, and improve their performance over
time [74]. It addresses the issue of catastrophic forgetting, which occurs when a
neural network learns new tasks and forgets how to perform previously learned
tasks. Techniques like Elastic Weight Consolidation (EWC) have shown promise
in mitigating this issue, allowing the neural network to learn new tasks in real-
time without forgetting the old ones [75].

With the beginning of edge computing and IoT, the need for lightweight
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real-time learning models that can operate on devices with limited computa-
tional resources is increasing [49, 50, 51]. To this end, various techniques are
being explored, such as model quantization, knowledge distillation, and the
development of compact neural network architectures like MobileNet [55] and
EfficientNet [56]. Another promising direction is the application of TinyML,
which specializes in deploying machine learning capabilities on embedded sys-
tems, further driving the feasibility of real-time learning in resource-constrained
environments [76].

One of the answers to this challenge is the growing research of Analog Ar-
tificial Neural Networks (AANNs) and also neuromorphic computing systems,
which present a promising trend in the hardware for machine learning. These
systems use physical, electrical circuits to mimic the behavior of neurons and
synapses, the basic units of biological brains. These circuits, crafted with ad-
vanced semiconductor technologies, enable simultaneous data storage and ana-
log computation, potentially significantly improving energy efficiency and speed
of machine learning operations [45, 77, 78].

Several key advancements have been made in this field. Notably, neuro-
morphic computing chips like IBM’s TrueNorth [70] and Intel’s Loihi [45] have
gained recognition. These chips contain Spiking Neural Networks (SNNs), which
more closely resemble the activity of biological neurons compared to traditional
artificial neural networks. This allows these systems to process data in a highly
parallel and energy-efficient manner, enabling more powerful and compact arti-
ficial intelligence systems [79].

Another significant advancement in analog neural networks is the emergence
of memristors, electronic components which behave as a variable resistance
whose value depends on the amount of electric charge flowing through it. Mem-
ristors can be used to construct analog weight elements for AANNs, effectively
implementing synapse connections in a neuromorphic system. This allows data
storage and manipulation in the same place, thereby reducing data movement
and improving energy efficiency [44, 46, 50, 53, 77].

While significant progress has been made in the area of AANNs and neu-
romorphic systems, there are still challenges to overcome. One of the main
challenges is the analog implementation of learning algorithms. Most current
neuromorphic systems use classic digital training algorithms based on gradient
descent, which are computationally and memory intensive. Research in this area
focuses on developing new algorithms suitable for analog implementations that
use the natural physical properties of electronic devices to perform mathematical
operations [47, 53, 79].

Analog circuits have been used to implement various learning algorithms,
such as backpropagation and Hebbian learning [53, 80]. In backpropagation-
based systems, weights are usually stored in digital memory and converted
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to analog signals during computation. However, new analog memory devices,
such as Phase-Change Memory (PCM) and Resistive Random-Access Mem-
ory (ReRAM), have been used to store weights directly in analog form, leading
to more efficient learning systems [34, 35].

However, the analog implementation of learning neural networks is not with-
out challenges. Analog devices suffer from issues such as device variability,
nonlinearity, and noise, which can lead to inaccurate computations. Moreover,
integrating analog devices with digital systems presents substantial challenges.
As the technology matures and more robust designs and error correction meth-
ods are developed, these obstacles are expected to be overcome, paving the way
for the widespread use of analog neural networks in real-world applications. It
can cause a shift from the traditional digital-centric AI approach to one that
combines digital and analog computation, potentially leading to more powerful,
energy-efficient, compact AI systems, and efficient on-device machine learning
applications [55, 56, 77, 70].

Despite the advancements achieved thus far, real-time learning of neural net-
works still faces significant challenges too. Striking a balance between stability
and flexibility, computational power and memory constraints, as well as privacy
and data security issues, are subjects of ongoing research. Nevertheless, con-
sidering the escalating demand for real-time learning capabilities across many
applications, substantial progress in this realm is anticipated in the years to
come [37, 39, 71].

In conclusion, though still an expeditiously evolving field, analog neural net-
works, and neuromorphic systems hint at a new generation of AI hardware.
Such systems could potentially revolutionize the machine learning domain and
provide notable improvements in energy efficiency and speed compared to tra-
ditional digital systems. The ongoing research lays a base for more robust and
efficient artificial intelligence systems in the future. The rapid progress in this
field suggests more exciting developments in the coming years with potential
impacts across various sectors [7, 10, 11, 21, 22, 51].
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Chapter 4

New structure

This chapter introduces a novel concept for Fully Analog Artificial Neural Net-
works (FAANNs) [52], specifically designed to meet certain criteria. The net-
work is configured to process various signals from a diverse array of electronic
sensors. These include basic sensors that measure temperature, light intensity,
and electrical conductivity, as well as more complex sensors such as microphones,
cameras, or antennas. Another criterion is to enhance measurement accuracy
by accounting for sensor degradation and changing environmental conditions, a
phenomenon known as concept drift [40]. Additionally, the FAANN is designed
to infer unmeasured quantities dependent on the measured ones. It is an im-
portant characteristic when the quantity of interest is costly or time-consuming
to measure directly.

These requirements led to the design of FAANNs to be used for real-time
learning, even for high-speed applications. The acceleration of the neural net-
work’s training process in this research is grounded on several principles. These
allow it to effectively bypass the limitations of the von Neumann architec-
ture [32], avoid synchronization signals, clock control, and overcome constraints
related to sampling, Analog-to-Digital Converter (ADC) and Digital-to-Analog
Converter (DAC).

The novel concept of FAANNs introduces a circuit-based solution for training
artificial neural networks. This innovative concept is inspired by the backprop-
agation algorithm and is built on the principles of gradient descent [14], aiming
to establish a hardware-based training process. The training process is executed
through feedback from an analog electrical circuit, making the entire operation
fully analog. This approach also eliminates the need for any clock control that
could slow down signal propagation, thereby allowing the neural network to
work fully parallel [44, 53, 54].

The newly designed structure aims to maximize versatility, potentially ac-
commodating as many types of neural networks as possible. Therefore, it is
designed as a feedforward neural network, serving as the foundation for creat-
ing various neural network types, all consisting of identical cells.

15



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. New structure

4.1 Blocks

When constructing a FAANN, it is essential to include several components,
often referred to as "blocks". These blocks help describe the neural network’s
design process more straightforwardly and clearly.

The electrical implementation of these blocks can be achieved using various
analog components, such as operational amplifiers, transistors, and resistors.
However, for verifying the functionality of this concept, which is the objective
of this dissertation, these blocks are temporarily considered ideal for the sake
of simplicity.

In this section, each of these blocks is represented with a schematic symbol,
mathematical descriptions, and NetList notations for subsequent simulation.

4.1.1 Multiplier

Vin1

Vin2

Iout

Figure 4.1: Symbol of multiplier.

The multiplier block has the schematic symbol shown in Figure 4.1. It is a
function that multiplies two voltages and whose output is a current calculated
by

Iout = Km · Vin1
· Vin2

, (4.1)

where Km [A/V2] is the ratio of output to the product of inputs.
The NetList notation of this block used in simulations is shown in Code 4.1.

1 .subckt multiplier in1 in2 out
2 B1 0 out I=0.0005*v(in1)*v(in2)
3 .ends multiplier

Code 4.1: NetList notation of multiplier subcircuit.

4.1.2 Activation function

Iin Vout

(a) Linear.

Iin Vout

(b) Nonlinear.

Figure 4.2: Symbols of activation functions.

The blocks representing an activation function have the schematic symbols
shown in Figure 4.2. The most commonly used activation function is a sig-
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moid [12], which is described by

Vout =
Vamp

1 + e
− Iin

Iref

, (4.2)

where Vamp is a constant determining the maximum possible voltage and Iref

is a referential current.
The notations for three distinct activation functions used in simulations,

namely the sigmoid, hyperbolic tangent, and linear identity activation func-
tions, are depicted in the NetList language in Code 4.2. Some of these activa-
tion functions exhibit nonlinearity in their formulation. This nonlinear behavior
can be attributed to two factors. The first relates to the restrictions by voltage
constraints, which influence the current traversing the system. Secondly, this
nonlinearity has characteristics of the blocks nearer to their real implementa-
tion [54].

1 .subckt activationFunctionSigmoid in out
2 B1 out 0 V=1/(1+ exp(-v(in)*5))
3 .ends activationFunctionSigmoid
4

5 .subckt activationFunctionTanh in out
6 B1 out 0 V=tanh(v(in)*2)
7 .ends activationFunctionTanh
8

9 .subckt activationFunctionIdentity in out
10 B1 out 0 V=5* tanh(v(in)/5)
11 .ends activationFunctionIdentity

Code 4.2: NetList notation of activation functions.

4.1.3 Derivative of an activation function

Vin Vout

Figure 4.3: Symbol of derivation of activation function.

The block representing the derivative of an activation function has the
schematic symbol shown in Figure 4.3. In the case of the sigmoid activation
function, the block is described by

Vout = Km
e

Vin
Vref

(e
Vin
Vref + 1)2

, (4.3)

where Km is a proportionality voltage constant and Vref is a referential voltage.
The NetList notation for the three different derivations of the activation

function that are used in the simulations are shown in Code 4.3. These are
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specifically the derivatives of the nonlinear sigmoid, tangent hyperbolic, and
linear identity activation functions.

1 .subckt diffActivationFunctionSigmoid in out
2 B1 out 0 V=4*exp(v(in)*5)/((exp(v(in)*5)+1)^2)
3 .ends diffActivationFunctionSigmoid
4

5 .subckt diffActivationFunctionTanh in out
6 B1 out 0 V=2/( cosh (4*v(in))+1)
7 .ends diffActivationFunctionTanh
8

9 .subckt diffActivationFunctionIdentity in out
10 B1 out 0 V=1
11 .ends diffActivationFunctionIdentity

Code 4.3: NetList notation of derivative of activation functions.

4.1.4 Subtractor

Vin1

Vin2 Vout

Figure 4.4: Symbol of voltage subtractor.

The subtractor block has the schematic symbol shown in Figure 4.4. It is a
function that subtracts two voltages and whose output is calculated by

Vout = Vin1 − Vin2 . (4.4)

The NetList notation of this block used in simulations is shown in Code 4.4.

1 .subckt subtractor in1 in2 out
2 B1 out 0 V=v(in1)-v(in2)
3 .ends subtractor

Code 4.4: NetList notation of subtractor.

4.2 Forward propagation structure

The FAANN comprises forward and backward propagation, two crucial compo-
nents that will be further discussed. Forward propagation involves processing
input data through the neural network layers to produce an output. In contrast,
backward propagation focuses on adjusting the network weights based on the
output errors [12]. This section describes the design and concept implementa-
tion of forward propagation in the FAANN.

The focus is on the forward propagation of the formal neuron, which serves
as the foundation for other types of neural networks. A graphical representation
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Figure 4.5: Formal neuron.

of this part of the formal neuron is shown in Figure 4.5. In a neural network, for-
ward propagation involves calculating the output of each neuron in the network
by applying a set of mathematical operations.

The fundamental equation for the output of a neuron can be expressed as

out = S
( N∑
i=0

wiini

)
, (4.5)

where out is the output of the neuron, ini represents the input values, wi denotes
the corresponding weights, in0 is the bias term, and S is the activation function.
This equation captures the core principle of forward propagation, where input
values are multiplied by their respective weights, summed up, and adjusted with
a bias term before being passed through the activation function to produce the
neuron’s output [12, 14].

The forward propagation process starts at the input layer and continues
through hidden layers until it reaches the output layer. At each layer, the
neurons receive input from the previous layer, perform the above calculations,
and pass the output to the next layer. The choice of activation function S

is critical in introducing nonlinearity into the network, allowing it to model
complex relationships between inputs and outputs [14].

The hardware implementation of forward propagation in neural networks
has been a subject of extensive research and development, as it plays a cru-
cial role in the performance of these networks. Numerous studies have ex-
plored various approaches to implementing forward propagation in both digital
and analog circuits, aiming to optimize speed, energy efficiency, and accuracy
[33, 48, 53, 54, 81, 82]. Hardware solutions, such as ASICs, FPGAs, and custom
analog circuits, have been employed to execute the complex computations in-
volved in forward propagation. These approaches have made significant strides
in reducing the latency and power consumption of neural networks, making them
more suitable for real-time applications and near-sensor processing [39, 50]. As
a result, hardware implementations of forward propagation continue to advance
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the state-of-the-art in neural network technology, enabling new possibilities in
machine learning, signal processing, and a wide range of applications [33, 35, 53].

Such a formal neuron in analog form has been implemented numerous times
in various designs. For this structure, all its parts will be considered as voltage
components. This means that the neuron’s inputs, weights, and outputs are
represented as voltages. The fundamental equation for the output of a voltage-
based formal neuron can be expressed as

Vout = S
( N∑
i=0

Vwi
Vini

)
, (4.6)

where Vout is the output voltage of the neuron, Vini
represents the input voltage

values, Vwi
denotes the corresponding weight voltages, Vin0

is the bias voltage,
and S is the activation function. In this configuration, the neuron performs the
calculations using voltage levels rather than numeric values.

Vout

Vw0

Vw1

1 V

Vin1

Vw2

Vin2

Vwn

Vinn

Inet

Figure 4.6: Analog implementation of forward propagation of a formal neuron.

The entire behavior of the designed forward propagation of the FAANN is
described by Equation (4.6), and the corresponding analog concept design is
illustrated in Figure 4.6. The weights Vwi

are represented by voltages stored on
capacitors, which will be elaborated in the subsequent section. Each input is
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connected to a multiplier, where the output is a current determined by Equa-
tion (4.1). The sum operation is performed using Kirchhoff’s circuit laws at the
node preceding the activation function; the resulting current is denoted as Inet.
Finally, the activation function is applied to the sum.

4.3 Novel backpropagation structure

The most widely used approach to training artificial neural networks involves a
combination of backpropagation and either Stochastic Gradient Descent (SGD)
or one of its variations [14]. In the field of machine learning, backpropagation
stands out as a crucial algorithm, essential for training not only feedforward
neural networks but also any differentiable parameterized networks [12].

Backpropagation is an algorithm that computes the gradient of the loss
function with respect to the network’s weights ∂E

∂wk
for a single pair of input-

output data. This algorithm leverages the chain rule from calculus, a rule used
to compute the derivative of the composition of multiple differentiable functions.
This method can be used for multiple weight updates by calculating the gradient
of the loss function for each example in the training dataset.

The renowned backpropagation algorithm is commonly combined with the
stochastic gradient descent method. In this combination, the weight update is
defined by the following equation

wk+1 = wk − η
∂E

∂wk
, (4.7)

where wk represents a weight at step k (with k ∈ N, the set of natural numbers),
E symbolizes the error, and η denotes the learning rate. This equation defines
how the weights of the network should be adjusted to minimize the error between
the network’s output and the expected output [12].

There are two primary ways of training analog neural networks. The first one
employs gradient descent and backpropagation of the error, which is a method
also utilized in traditional networks. This process mainly takes place in the dig-
ital component of the system and then gets transmitted to the analog part [48].
However, this approach is subject to the von Neumann bottleneck [32].

The second way involves designing systems that replicate the structure and
function of the brain, a field sometimes referred to as neuromorphic computing
or neuromorphic engineering. This technique deviates from the digital compu-
tations performed by conventional artificial neural networks. The training of
these networks usually necessitates specialized algorithms based on the physical
properties of the used components, and are currently developed only for specific
tasks [46].

Regardless, these techniques generally require some form of gradient descent
and backpropagation or their approximations, as these are the most effective
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methods known for training networks. However, the application of these meth-
ods on analog hardware can be demanding, and a significant portion of research
in this field is dedicated to discovering effective ways to achieve this.

This work introduces a learning method suited for near-sensor applications
and capable of functioning in real-time. The method is rooted in backpropaga-
tion with SGD, chosen for reasons previously discussed.

Designing this learning process in a completely analog manner presents a
significant challenge due to the stepwise nature of the algorithm. As illustrated
in Equation (4.7), k represents a step that needs to be bypassed.

To address this challenge, the process is reconstructed within a continuous
domain. It is realized by substituting the step variable k with continuous time
t, and integrating the weight w over time. Consequently, the revised formula
for weight change appears as

w(t) = w(t0)− η

∫ t

t0

∂E(τ)

∂w(τ)
dτ, (4.8)

where w(t) denotes the weight function at continuous time t ∈ R, and E(τ)

represents the error, which is changing continuously over time too.

4.3.1 Weights implementation

When designing an analog learning circuit, the selection of the suitable compo-
nent to store and adjust the "weight" value, a key part of the learning process,
is crucial.

Memristors and memristor arrays have recently emerged as a promising so-
lution for this. They store the weight value as a resistance level and are par-
ticularly appealing due to their similarity to biological synapses. Additionally,
their compactness and low power consumption make them an attractive op-
tion [77, 83]. However, this technology is still evolving and needs to be more
robust for some applications [53].

Another choice is to use capacitors for their ability to store charge. They
are a proven and robust technology frequently used in integrated circuits. Their
ubiquity within these circuits makes them particularly convenient for concept
validation, as their functionality is straightforward to demonstrate.

However, using capacitors in integrated circuits has its drawbacks, mainly
their size. Each neuron would require N + 1 capacitors as weights, with N

being the number of inputs. Larger structures would mean a bigger chip area.
The specific implementation depends on technology, but there could be tens of
thousands of capacitors on 1 mm2 of a chip. That is sufficient for a large number
of fast near-sensor applications.

The capacitor can be used in several different ways to store a value. In this
study, the capacitor’s voltage is specifically used as a direct representation of
this weight.
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For a design where no clock is used to synchronize the process of reading a

value and writing a new one, there needs to be some method to ensure that the
value changes. It is achieved by connecting a current source to the capacitor to
modify its voltage.

In this case the charging of the capacitor is realized by a current source
according to the known equation

Vw(t) =
1

C

∫ t

t0

I(τ)dτ + Vw(t0). (4.9)

where Vw is the voltage across the capacitor.
This charging current is to be denoted as Icharged and is substituted into the

proposed schema of analog forward propagation. The result is the circuit shown
in Figure 4.7.

C

Icharged

Vw

Vin

K · Vin · Vw

Figure 4.7: Analog implementation of a neural network weight.

If this learning process is inspired on the backpropagation, the capacitor
charging current, in this case Icharged should be implemented by successively
charging the capacitor according to Equation (4.8). This charging current is
designed according to

Icharged = −Kη
∂E

∂Vw
, (4.10)

where Kη [S] is the conductance coefficient of Icharged to partial derivative of
the error with respect to weight.

By substituting Equation (4.10) into the general Equation (4.9) for charging
a capacitor, the result is

Vw(t) = Vw(t0)−
Kη

C

∫ t

t0

∂E(τ)

∂Vw(τ)
dτ. (4.11)

Comparing this Equation (4.11) with the learning Equation (4.7) for weight
change in continuous time, a clear similarity is observed

Kη

C
≡ η, (4.12)

where η is the learning rate. Let’s define Kη as the learning rate coefficient for
FAANN.
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4.3.2 Error propagation

The backpropagation process fundamentally relies on solving the formula for
weight change, referenced in Equation (4.7). This design is transiting to the
Equation (4.11), which requires computing the partial derivative of the error
function E with respect to the weight Vw. This process involves the application
of Leibniz’s chain rule to these networks [12].

To simplify our calculations, we introduce a new variable, net, defined as

net =

N∑
i=0

Vwi
Vini

(4.13)

where the unit of net is V2.
Applying the chain rule twice to the equation for the partial derivative of

the error with respect to the weight Vw is the result

∂E

∂Vw
=

∂E

∂Vout

∂Vout

∂net

∂net

∂Vw
. (4.14)

Before calculating the first partial derivative for Equation (4.14), defining
the error function E is necessary. Often referred to as a loss function or cost
function, that is a measure of how much the network’s output deviates from
what was expected. The primary objective of the neural network is to minimize
this error. Choosing an appropriate error function can significantly influence
the network’s learning rate and stability. In this context, the Mean Squared
Error (MSE) is selected as the error function due to its simplicity and ease
of implementation in an analog way. The MSE is often favored for regression
problems [14].

The MSE is mathematically represented as

E =
1

n

n∑
i=1

(Vouti − Vtargeti)
2, (4.15)

where E [V2] is the error, n is the number of outputs, Vtargeti is the ideal or
expected output and Vouti is the obtained output signal.

To simplify future interpretation, let us define the first partial derivative
from Equation (4.14) as

VE =
∂E

∂Vout
, (4.16)

where VE [V] is referred to as the voltage error.
The actual calculation of the error voltage VE is the derivative of the error

function E from Equation (4.15) according to one output voltage Vout. The
result is written as

VE = Vout − Vtarget, (4.17)

where the result is the difference between the output and target voltage.
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The universal solution for the second partial derivative from Equation (4.14)

is not unambiguous due to its direct dependency on the activation function,
which can differ for each neuron. Specifically, it represents the partial derivative
of the activation function with respect to net. With a defined activation func-
tion, the calculation of this partial derivative becomes feasible. In the context
of this electrical design, the function necessitates its creation as an independent
sub-circuit. For example, the partial derivative is a constant value in scenarios
where the activation function is linear. Concrete examples of derivatives of ac-
tivation functions as independent sub-circuits are written in Code 4.3 and have
the schematic symbol shown in Figure 4.3.

The last partial derivative from Equation (4.14) is solved as

∂net

∂Vw
= Vin. (4.18)

The entire calculation leads to determine the magnitude of the current that
can update the weight Vw. This current can be expressed by substituting into
Equation (4.10) as

Icharged = Kη(Vtarget − Vout)
∂Vout

∂net
Vin, (4.19)

where all elements are already known.

Vout

Vw0

Vw1

1V

Vin1

Vtarget

Icharged0

Icharged1

− ∂E
∂Vout

∂net
∂Vw0

∂net
∂Vw1

Figure 4.8: Analog implementation of backpropagation for the output layer.

The design of the learning circuit for the output layer can be implemented
into the block diagram as seen in Figure 4.8. All parts of Equation (4.19)
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are designed in the circuit as known blocks. A more detailed description of
individual blocks can be found in Section 4.1.

In the block concept used in this whole work, resistor symbols are used as
current-to-voltage converters. This notation is a well-recognized representation
of this phenomenon, thus achieving better readability of the block diagrams.
However, the resulting implementation could significantly differ.

4.3.3 Error propagation between layers

The backpropagation of each neuron in the hidden layers does not directly de-
pend on the error function. Instead, the backpropagation of each neuron in the
hidden layers is influenced by the errors of all neurons that are connected to its
output [12].

Thus, the computation of a neuron’s error voltage in the hidden layers is
dependent on calculation of the sum of the errors of neurons in the layer after
according to their input. This relationship is mathematically represented as

VE =
∑
n

∂E

∂Vinn

, (4.20)

where n represents a neuron connected to the output of the neuron whose error
voltage is being calculated.

Again, the chain rule is used twice to calculate this formula. The modified
equation then becomes

VE =
∑
n

∂E

∂Voutn

∂Voutn

∂netn

∂netn
∂Vout

. (4.21)

The first two partial derivatives in the sum are solved in Section 4.3.2. The
last term in the equation is resolved as

∂netn
∂Vout

= Vwn
, (4.22)

where Vwn
is the voltage on the weight of neuron n.

In summary, the expression can be simplified to

VE =
∑
n

VEn

∂Voutn

∂netn
Vwn

. (4.23)

The design example of a learning circuit with a hidden layer is shown in
Figure 4.9. In this figure, the layers are marked in blue borders, while green
borders highlight the output layers. The evolution of this design is based on
Equation (4.23), whose implication is shown in red in the figure.
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Vout2

Vw0

Vw1

Vin1

Vtarget2

Vout1

Vw0

Vw1

Vin1

Vtarget1

Vout

Vw0

Vw1

Vin1

Output layer

Hidden layer −VE

−VE

−VE

IE

Vout
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I1E1

I
2 E

1

Output neuron 1

Output neuron 2

Figure 4.9: Analog implementation of backpropagation between layers.

Each computation in the summation process is executed using a single mul-
tiplier. The following equation determines this multiplier’s output

IEi
= −GEVE

∂Vout

∂net
Vwi

, (4.24)

where i is the neuron input number, and GE [S] is the electrical conductivity
constant.

The actual summation is again performed according to Kirchhoff’s circuit
laws at the node according to

IE =
∑
n

InEi
. (4.25)

where for FNN, i is the output number of the counted neuron, which is the same
as the input number according to Equation (4.24), and n is the neuron number
at the output of the counted neuron.

27



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. New structure

4.4 Circuit design

The final step of creating this new structure is the formulation of a circuit
capable of representing a fully analog neuron. This circuit includes both forward
and backward propagation, irrespective of whether it is part of the input layer
or any other layer within the neural network. Furthermore, the circuit design
should remain as simple as possible. It is also necessary for the circuit to allow
for adjustments in the learning rate without requiring structural modifications.

Vη

IE

Vout

∂Vout

∂net

∂net
∂Vw1

Vbias

Vw1

Vw2

∂net
∂Vw2

IE1

IE2

Vin1

Vin2

Vw0

− ∂E
∂Vout

Forward propagation

Backpropagation

Inet

Figure 4.10: A fully analog neuron’s block implementation including a learning
circuit with two inputs.

28



4. New structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
These requirements were carefully considered in the design of the fully analog

neuron with learning capability, as depicted in Figure 4.10. A green boundary
delineates components required for forward propagation, while those required
for backward propagation are highlighted with a blue boundary. The figure also
illustrates the voltages corresponding to the equations mentioned earlier.

A new voltage, Vη, is introduced, which serves as an alternative to the learn-
ing rate found in digital networks. This voltage directly affects the coefficient
Kη from Equation (4.11). Therefore, if Vη = 0, V , the network does not learn.
Conversely, if Vη > 0V , the weights are adjusted based on the magnitude of the
error and proportionate to the size of this voltage.

Additionally, the current outputs IEN
are present, serving to propagate the

error back to the preceding layers. This proposed circuit can be utilized as a
neuron with any number of inputs. It necessitates adding more sections of the
subcircuit with input voltage Vin and current output IE , each associated with
a single capacitor and three multipliers.

e1

e2

en

in1

in2

e

out

Nn

Vη

IE1

IE2

IEn

Vin1

Vin2

Vinn Vout

IEη

Figure 4.11: Symbol of an analog neuron with n inputs.

For further simplification, the entire circuit of the fully analog neuron will
be represented by the symbol shown in Figure 4.11. This subcircuit is tagged
by the letter N throughout this work, and the superscript defines the number
of inputs.

Figure 4.12 demonstrates how these blocks are interconnected. It represents
a feedforward fully analog neural network comprised of two inputs, four neurons
in the first hidden layer, two in the subsequent hidden layer, and a single output.
It incorporates two input signals represented as voltage sources Vin1 and Vin2 .

The voltage signal Vtarget is set to the values expected at the output. Addi-
tionally, the voltage Vη determines the learning rate, which remains consistent
for all neurons within the network. The output currents IE at the first hidden
layer are not used, as the error does not propagate further. Subsequent chapters
provide examples demonstrating the use of this network.
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Chapter 5

Verification of functionality

This chapter aims to fulfill this dissertation’s second objective, which involves
validating the proposed structure’s functionality via an electrical behavioral
model. The focus is on validating that the designed neural network concept is
able to learn effectively.

Rather than focusing on validation directly on the hardware or transistor-
level simulations, this process takes a higher-level behavioral approach. This
strategy involves circuit simulation, where the neural network is defined using
blocks defined by mathematical expressions. That simplifies the process and
provides a broader view and better understanding of the overall behavior of the
network [84].

Simulations focus mainly on ensuring the proper functioning of the network’s
learning process. As part of this, the influence of hyperparameters on the learn-
ing process is examined. A comparative analysis with traditional artificial neural
network approaches is performed over the simulation results.

5.1 Circuit simulation equipment

The initial design of all circuits and their simulations for this dissertation were
executed using the Graphic Editor of Electrical Circuits (GEEC) program [85].
This program uses ngspice as its core for simulation. GEEC is used extensively
throughout the forward propagation chapter and partially in the backpropaga-
tion section. The outputs were not only the results of simulations that could be
saved directly in the program but also all circuits and diagrams in this disser-
tation [86].

However, the complexity of circuits grew due to several factors. These in-
cluded the need to almost completely redesign the neural network with every
change of certain parameters and the need to read the weight and output values
and reassign them back to the circuit for the next epoch. This continued with
the challenging preparation of visualizing the results from each measurement.
The preparation of voltage sources as input data for the neural network also
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became complicated, as it needed to be done separately for each dataset and
each epoch once it was discovered that shuffling elements improved the neural
network’s learning. With these complications, preparing circuits for simulation
took significant time, and the process became prone to errors.

These and many other problems led to the creation of an independent
FAANN simulation library to automate all processes as much as possible. This
library is named "faann-simulator".

5.1.1 Structure of the faann-simulator

The faann-simulator program is written in TypeScript, with its computational
part running on node.js [87]. TypeScript was chosen for its simplicity and
clarity in defining the neural network’s structure. Thanks to its statically-typed
language and intelliSense, using the library becomes remarkably straightforward,
even without an in-depth documentation study [88]. The ngspice is used as
the core for simulation, launched by the spawn system method. Ngspice is an
open-source spice simulator for electric and electronic circuits. It is a mixed-
level/mixed-signal circuit simulator. Its code is based on three open-source
software packages: Spice3f5, Cider1b1, and Xspice [89].

FAANN

training configuration

ngspice
spice simulator

ngspice
Frontendweb

Database

easy-db

RAM disk
file storage

NetList

structure definition

results

1

2

3

4

faann-simulator

TypeScript library

result processing

code

Figure 5.1: Structure of the faann-simulator library.

The ngspice program is fed with a file containing the NetList, which en-
compasses a complete circuit description, including the simulation and output
parameters specification. Following this, ngspice creates a file with the simu-
lation results. The faann-simulator library parses and subsequently processes
this file. The processed data is then stored in the easy-db database, which
suits this case. The primary reason is that the data is instantly available and
can be further processed in JavaScript Object Notation (JSON) files. Addi-
tionally, the dynamism of the database allows the storage and modification of
data in various formats without the need to rewrite the entire program, which
is beneficial for development and testing. The database also offers the same
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Application Programming Interface (API) for the node.js environment and the
web browser environment, which is utilized to select and visualize the simulation
results. This combination of technologies enables the use of the library on any
operating system. This entire structure is illustrated in Figure 5.1.

5.1.1.1 Application programming interface

The library faann-simulator is designed to maximize user-friendliness and sim-
plifies the process of testing various neural network configurations. Code 5.1
provides an example of basic usage of the library for training a FAANN.

The neural network structure and path to the spice program are defined
during the initialization. This process necessitates two parameters since the
library facilitates not just background simulations but also the display of simu-
lation progress in the native ngspice graphical interface. For Windows systems,
ngspice offers two executables, one for the Command Line Interface (CLI) and
another for the Graphical User Interface (GUI). Thus, separate paths need to
be defined for each. To display the simulation progress, only replace the train
method with the trainPlot method, which accepts the same parameters.

1 import FAANN from "faann -simulator";
2

3 const faann = new FAANN({
4 spiceCLI: "ngspice",
5 spiceGUI: "ngspice",
6 structure: [2, 3, 1],
7 });
8

9 const result = await faann.train ({
10 testName: "xor -example",
11 durationTime: 0.25,
12 learningRate: 0.5,
13 epochs: 200,
14 datasetName: "xor",
15 trainingSet: [
16 { input: [0, 0], output: [0] },
17 { input: [0, 1], output: [1] },
18 { input: [1, 0], output: [1] },
19 { input: [1, 1], output: [0] },
20 ],
21 // optional parameters
22 shuffleSet: true ,
23 saveDetail: false ,
24 saveWeightsAfterPredict: true ,
25 showProgress: "full",
26 transitionTime: 0.0025 ,
27 });

Code 5.1: A simple example of how to use the faann-simulator library.
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The train method is asynchronous and returns an object containing the
simulation results. The parameters for this method are as follows:

testName Type: string. Test designation. This parameter is useful for subse-
quent result analysis.

datasetName Type: string. Dataset designation. This parameter is also helpful
for subsequent result analysis.

shuffleSet Optional. Type: boolean. Default: false. Shuffle the dataset for
each epoch. This feature is developed only for comparison purposes with
traditional ANN. The network is primarily designed for time series, where
maintaining data order is crucial.

trainingSet Type: Data. Training data.

durationTime Type: number [ps]. Time duration for one data sample.

transitionTime Optional. Type: number [ps]. Default: durationTime / 1000.
The transition time from one data value to another that is part of the
durationTime. If this parameter is set close to the transitionTime value,
the waveform behaves less jumpy and closer to the natural behavior of the
received signals from the sensors.

learningRate Type: number [V]. The rate of change of weight in response to
error. The voltage supplied to Vη during the learning process.

epochs Type: number [-]. The number of training repetitions on the trainingSet.

saveDetail Optional. Type: boolean. Default: false. Save voltage progress
during the training. These data are storage-intensive, so it is recommended
to save them only when a close observation of training progress is required.

saveWeightsAfterPredict Optional. Type: boolean. Default: false. Save the
voltage degradation on the capacitors after the measurement of statistics,
which is performed for each epoch. If the value is true, the paralleliza-
tion of calculations for reading and setting the weights is disabled in this
measurement process.

showProgress Optional. Type: false | "full" | "line" | "line-predicts" | "line-
errors" | "line-weight". Default: "line". The amount of information dis-
played during training in the console.

The structure definition of the network in the library is designed to be as
transparent and configurable as possible. Therefore, its most straightforward
and shortest definition is simply an array of numbers. Each number represents
the count of neurons in a particular layer. The first number is the count of
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neurons in the input layer, the following numbers in the array are counts of
neurons in hidden layers, and the last is the count in the output layer. In
this number-based definition, the default activation function, i.e., the sigmoid
function, is set.

If a different activation function is needed, an object-based definition is used.
It allows for the specification of a unique activation function for each layer. The
count of neurons in a layer is again indicated by a number under the count key,
while the activation function type is specified under the activationFunction
key. This library implements three different activation functions: sigmoid, tanh,
and identity.

Furthermore, if different activation functions are required within one layer,
it is possible to use an array of objects where each object represents a single
neuron and its activation function. Examples of all three methods of inputting
the structure are provided in Code 5.2.

1 const structureShort = [2, 3, 1];
2

3 const structureMedium = [
4 1,
5 { count: 3, activationFunction: "tanh" },
6 { count: 1, activationFunction: "identity" },
7 ];
8

9 const structureLong = [
10 1,
11 [
12 { activationFunction: "sigmoid" },
13 { activationFunction: "sigmoid" },
14 { activationFunction: "tanh" },
15 ],
16 { count: 1, activationFunction: "identity" },
17 ];

Code 5.2: Example of neural network structure definition for faann-simulator.

For more advanced usage of this library, it is possible to read and set the
weights of individual neurons. The same is true when reading the entire net-
work structure. This functionality is beneficial not only for displaying ongoing
values but also for saving and loading the network at specific phases of training.
Code 5.3 demonstrates how to work with this functionality.

Information about the network structure and its weights are also stored di-
rectly in the database for each epoch separately, enabling their display in the
web interface. Hence, during the training, it is possible to download the net-
work weights and subsequently load them into another network instance. This
instance can then continue the training from a certain point using a different
approach.
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1 const structure = faann.getStructure ();
2 const weights = faann.getWeights ();
3

4 const newFaann = new FAANN({
5 ... spiceConfig ,
6 structure ,
7 weights ,
8 });
9

10 const newWeights = newFaann.getWeights ();
11 faann.setWeights(weights);

Code 5.3: Demonstration of manipulating a faann instance and its weights with
the faann-simulator for possible saving and loading of the model.

5.1.1.2 Training process

The entire training process of the library unfolds in two phases. The first phase is
the training itself. Initially, voltage sources of the inputs and target outputs are
set according to the training data using the pulse parameter, similar to what
is used in Code 5.4. These data are randomly shuffled or not, based on the
shuffleSet parameter. Subsequently, a complete netlist is created containing
the set sources and the neurons as subcircuits.

These neurons are connected according to the network structure defined dur-
ing initialization. The neurons’ weights are randomly generated or loaded from
previously saved values. The netlist also includes detailed transient analysis
information and a list of output voltages for subsequent analysis. Then, the
simulation is executed in ngspice, and upon completion, the results are saved
next to the input netlist. These files are deleted after parsing and processing.

Considering the high number of files handled during training, some of which
can be large, a Random Access Memory (RAM) disk is used to speed up the
entire process and save the hard disk lifetime. In this step, the trained weights
of the network are obtained from the simulation results and directly set in the
neural network instance.

The second phase is the evaluation of the trained network. In this stage,
the voltage sources of the inputs are set to one specific input sample, and the
voltage Vη is set to 0 V. After measuring all output voltages, the network error
is calculated, and all measured parameters, including the weights, are saved in
the database. This entire process is repeated for each epoch. Figure 5.2 depicts
a simplified training process.
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Figure 5.2: The learning process diagram of the faann-simulator library.
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5.1.2 Outputs

The library offers several outputs. Firstly, there is the trained neural network
itself and the result object, which contains the training and evaluation results
from Code 5.1. These results can be immediately processed and used for sub-
sequent processes in the program. Another output is the database, which can
be accessed from multiple programs to display training results, aggregate them,
and perform evaluations.

The library also includes a graphical interface for displaying and evaluating
results. This interface provides real-time monitoring of the currently trained
network, its structure, error progression, and other parameters. Additionally,
the interface allows users to view aggregated results from all networks based
on parameters such as testName, and make comparisons. These results can be
exported as data that can be interpreted in other programs, like LATEX. An
example of this can be seen in Figure 5.3.
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Figure 5.3: The learning curve of the FAANN model exported from the faann-
simulator.
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5.2 Forward propagation

This section presents an exploration of the forward propagation capabilities of
the FAANN proposal. The focus is to ascertain that FAANN’s forward propa-
gation is working satisfactorily.

A simulation is carried out, drawing parallels between the proposed FAANN
and the traditional ANN. The configuration of both networks comprised two
inputs, a single hidden layer with two neurons, and one output, as seen in
Figure 5.4. All activation functions are defined as a sigmoid.

6.27V

-6.38V

-3.40V

1V

6.11V

-5.90V

2.96V

1V

9.91V

-9.66V

4.61V

1V
Vin1

Vin2

Vout

N1

N2

N3

Figure 5.4: Schematic of the forward propagation of FAANN in GEEC to
demonstrate the solution of the XOR problem.
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Input 1 Input 2 Expected output ANN output FAANN output [V]
0 0 0 0.014 0.01400
0 1 1 0.984 0.98426
1 0 1 0.987 0.98699
1 1 0 0.012 0.27115

Table 5.1: Comparison of ANN and FAANN outputs for XOR simulation with
the same set weights.

The conventional ANN was trained to utilize the data presented in Table 5.1.
The table also documents the output from the ANN. For better comparability
of results, this network was not fully trained.

N1 N2 N3

Bias weight 6.27 6.11 9.91
First input weight -6.38 -5.90 -9.66
Second input weight -3.40 2.96 4.61

Table 5.2: Neural network weights used to solve the XOR problem.

Table 5.2 captures the weights of the trained neural networks. In the case of
FAANN, the weights are set to the same values as voltages of capacitors Vw, as
seen again in Figure 5.4. Subsequently, an Operating Point (OP) analysis was
executed for each combination of input voltages. The outputs from this analysis
are also recorded in Table 5.1, under the FAANN output column.

The ANN and FAANN did not yield identical results despite identical net-
work structures. This discrepancy can be attributed to the inherent differences
in the element structure. However, these differences are part of the learning pro-
cess. It is therefore expected that if the learning process is carried out directly
at FAANN, its output will be correct.

A parametric Direct Current (DC) analysis was performed to further inves-
tigate the differences in FAANN network behavior. Input two is set to 1 V, and
input one is set to values from 0 V to 1V. The result is shown in Figure 5.5.

Despite the observed differences, this study validates the functionality of the
FAANN model and its suitability for further exploration.
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Figure 5.5: DC analysis of FAANN for XOR simulation with Vin2 = 1V .

5.3 Learning process

This chapter explores the learning process of the FAANN model. The func-
tionality of this model is validated through simulations, providing insights into
the fundamental mechanisms that drive the model’s learning capabilities. The
initiation of this exploration with the simplest learning scenarios facilitates a
thorough understanding of the core principles underlying the model’s learning
process.

To validate the FAANN’s learning process, the well-known XOR problem is
used as a benchmark. This problem, renowned for its non-linear separability
characteristic, is an excellent metric for evaluating the model’s problem-solving
aptitude and capacity to learn and adapt [53, 54, 90]. Subsequently, the impact
of individual parameters on the learning process is examined. The investigation
aims to elucidate how parameter alterations can influence learning outcomes.

In the final stages, an investigation is conducted into the potential effect of
specific electrical parasitic properties on the learning process. This investigation
aims to determine whether these properties can disrupt or invalidate the learning
process.

5.3.1 Weights update analysis

The initial simulation is conducted to ensure the proper convergence of weights
and the output voltage. This particular simulation involved two neurons in the
hidden layer and a single neuron in the output for the purpose of simplifying the
analysis. Subsequently, two output neuron excursions are monitored to inves-
tigate correct functionality. This circuit is created, and the transient numeric
analysis is executed using the GEEC platform.
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Figure 5.6 presents the outcome of this preliminary simulation. The evo-
lution of the weights appears to align with expectations, evidencing a pattern
that suggests a correct and functional update mechanism. Observations indicate
that both weights adapt dynamically, aiming to match the output voltage with
the predetermined target voltage, Vtarget. This adaptive behavior is a crucial
factor for the successful operation of our concept.
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Figure 5.6: Weights monitoring in one step of FAANN learning.

5.3.2 Learning from dataset

The primary design goal of the FAANN is to function with analog sensors, not
necessarily to learn from datasets. Still, comprehending its operation and the
advantages it provides is crucial when comparing this model with traditional
neural networks.

Vin1
[V] Vin2

[V] Vtarget [V]
0.2 0.6 0.9
0.8 0.4 0.1

Table 5.3: Dataset for simulation of FAANN with two inputs.

This section’s second simulation exhibits the complete learning process of the
FAANN, illustrated through transient analysis. The learning dataset, consisting
of two rows, is represented as voltage values and integrated as voltage sources.
This dataset, given in Table 5.3, employs the pulse notation for inputs and
target values.
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Figure 5.7: Schematic circuit of a single analog neuron with two inputs for
learning a dataset using simulation in GEEC.

The network structure for this simulation involves a single neuron with two
inputs, the schematic of which is provided in Figure 5.7. Each row in the dataset
changes every 200 ps, and the variable Vη toggles between 0V and 0.2V during
the learning process at intervals of 400 ps. This arrangement allows for a detailed
examination of each teaching stage and the corresponding learned values.

1 Vbias in0 0 dc 1
2 Vin1 in1 0 dc 0 pulse 0.2 0.8 0 2p 2p 200p 400p
3 Vin2 in2 0 dc 0 pulse 0.6 0.4 0 2p 2p 200p 400p
4 Veta eta 0 dc 0 pulse 0 0.2 0 2p 2p 400p 800p
5 Vtarget target 0 dc 0 pulse 0.9 0.1 0 2p 2p 200p 400p

Code 5.4: Voltage sources definition for circuit in Figure 5.7.

The results are displayed in Figure 5.8. One of the observations from this
simulation is the FAANN’s fast learning ability in this particular setup. Notably,
by completing 20 epochs, the output voltage Vout closely aligns with the target
voltage Vtarget.
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Figure 5.8: Transient simulation of the FAANN learning process with a dataset
containing two records.

5.3.3 Learning multilayer structure

This simulation aims to validate the learning process between layers in FAANN.
The network utilizes an analog implementation featuring a single hidden layer
with two neurons and one neuron in an output layer. The dataset used for this
purpose is identical to the one previously used, as shown in Table 5.3. All other
experimental setup remains the same as that in the preceding simulation.
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Figure 5.9: Transient simulation of the learning process of a FAANN structure
with a hidden layer.
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The simulation results are presented in Figure 5.9. The key observation is

that the multilayer configuration learns faster than the single-layer structure.
The neural network demonstrates a learned state as early as epoch 12. This
outcome aligns with expectations, as the increased capacity for information
representation contributes to the accelerated learning process.

5.3.4 XOR problem verification

The XOR problem shown in Table 5.4 is often used as a test case for neural
networks because it’s a simple problem that requires nonlinear decision bound-
aries, which in turn requires a certain level of complexity from the model. It
cannot be solved using a single linear classifier or perceptron because the classes
(1’s and 0’s) are not linearly separable.

Furthermore, the XOR problem was historically significant in developing
neural networks. In the late 1960s, the perceptron model, the simplest form of
a neural network, was shown to be unable to solve the XOR problem. It led to a
significant decrease in interest and funding for neural network research. It wasn’t
until the development of the multi-layer perceptron and backpropagation in the
1980s that it was shown that neural networks could solve the XOR problem,
leading to a resurgence in neural network research.

Thus, the XOR problem is an excellent baseline test case for neural networks
for a lot of research and has particular historical significance. It is used in both
older studies of learning algorithms [54] and more modern studies that look at
the use of memristors [53] or SNNs [90].

In this particular study, the XOR problem is used to validate the capabilities
of the FAANN.

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 5.4: Training dataset of the XOR problem.

A configuration for the FAANN model comprised of two input neurons, eight
neurons in the hidden layer, and one output neuron for this subsection. This
architecture was chosen to be sufficiently complex to exhibit learning deficiencies
and effectively solve the XOR problem.

A significant part of the simulation setup is the initialization of the network
weights. To account for the randomness in weight initialization and its potential
impact on network performance, ten different simulation are run, each with a
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unique set of initial random weights.
The key performance metric for these analyses and for FAANN is the MSE,

which is measured and calculated at the end of each training epoch. The MSE
provides a quantitative measure of the network’s performance, indicating the
difference between the network’s predictions and the actual values. Lower MSE
values correspond to better network performance and model accuracy.

The simulation results are depicted in Figures 5.10, 5.11, and 5.12. Each
figure represents the performance of the FAANN for a different learning rate
η, with each colored line within a figure representing a different set of initial
network weights.

Learning rate η plays a significant role in determining the network’s learning
efficiency. It can be manipulated by altering the value of Vη or adjusting the
time allocated for training on a single dataset row.

Below are the results of these simulations and analyses, providing an un-
derstanding of the FAANN’s performance in handling the XOR problem under
various learning rate settings.
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Figure 5.10: The learning curve of the FAANN model with a small analog
learning rate (0.1V) for the XOR problem.
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Figure 5.11: The learning curve of the FAANN model with an approximately
optimal analog learning rate (0.5 V) for the XOR problem.
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Figure 5.12: The learning curve of the FAANN model with a large analog
learning rate (0.9V) for the XOR problem.
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5.3.5 Dependence on parasitic properties

The premise of this study assumes that the neural network can adapt and learn
despite the inherent parasitic properties. Nevertheless, the tolerance of this
adaptation has its limits, and this subsection aims to explore these constraints.
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Figure 5.13: Demonstration of the inaccuracies of the multiplier block used
with parasitic properties included.

The circuit element most impacted by parasitic properties is the multiplier
block. Its role in the network makes it sensitive to inaccuracies, which can
significantly affect overall network performance. These inaccuracies are modeled
as

Iout = KI · tanh(Km · Vin1
· (Vin2

+ Voff )), (5.1)

where KI is a constant that determines the maximum current flowing through
the circuit at the maximum allowable input voltages. A hyperbolic tangent
function distorts the multiplication itself, and a voltage offset is added at the
second input. The effect of these inaccuracies is reflected in the multiplier block’s
output current Iout. Used configuration inaccuracies of the multiplier block are
shown in Figure 5.13.

The simulation results showcasing the impact of these inaccuracies is illus-
trated in Figure 5.14. For comparison, Figure 5.11 shows the results of simula-
tions with the same configuration only without these parasitic properties of the
multiplier. Although these properties impact network performance, it is critical
to note that it does not fundamentally impede the network’s functionality.

While the current analysis focused on the multiplier block, similar simula-
tions can examine the network’s resilience to noise, the effect of Complementary
Metal-Oxide-Semiconductor (CMOS) capacitance non-linearity, and other circuit-
level properties. However, these simulations can only partly represent the actual
behavior at the block design level, as the real impact largely depends on the
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Figure 5.14: The learning curve of the FAANN model with a modified multi-
plier block incorporating parasitic properties and with an approximately optimal
analog learning rate (0.5V) for the XOR problem.

specific implementation used.
In conclusion, while parasitic properties introduce certain challenges and

inaccuracies, the designed neural network exhibits a commendable degree of
tolerance, maintaining its core functionality.

5.4 Comparison with classical ANN

The development of FAANNs is driven by a different set of challenges than those
addressed by traditional ANNs. Specifically, FAANNs are designed to address
the real-time processing of analog signals, a task inherently different from the
data processing intended for classical ANNs. It is essential to understand that
these two types of networks are used for disparate problem domains; thus, direct
performance comparisons are generally inappropriate and potentially mislead-
ing.

However, for the purpose of clarifying the functional mechanisms and charac-
teristics of FAANNs, this research adopts a comparative approach. This analysis
is not aimed at evaluating which model is better but rather at using established
knowledge about ANNs to explain FAANN behavior. If similarities in learning
processes are found, FAANNs may exhibit behavioral patterns that mirror those
of classical ANNs.

Moreover, this comparative view provides an opportunity to indirectly assess
the FAANN concept’s learning speed. This comparison makes it possible to
understand whether the FAANN system is able to learn in real-time, which is
its essential feature.
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5.4.1 Learning properties

In this subsection, the focus is on comparing the learning properties of FAANNs
and classical ANNs. As demonstrated in Sections 5.3.2 and 5.3.3, FAANNs
exhibit faster learning rates as the network structure becomes more complex, a
property shared with classical ANNs.

Further investigation in Section 5.3.4 revealed how FAANNs respond to
changes in the learning rate. This reaction mirrors the behavior of classical
ANNs, furthering the similarities between the two types of networks. Upon fur-
ther adjustments to the learning rate, it was observed that FAANNs have the
potential to settle into local minima. This behavior, illustrated in Figure 5.15,
is typically not considered advantageous. However, it is another characteristic
that FAANNs share with classical ANNs.
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Figure 5.15: The learning curve of the FAANN model with a local minimum
for the XOR problem.

The simulations show that FAANNs have properties similar to those of clas-
sical ANNs. It suggests that data scientists can deploy this neural network
similarly to how they would use traditional ANNs. In essence, the operational
familiarity and comparable learning properties of FAANNs could lower the bar-
rier to their adoption in the data science community.
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5.4.2 Learning speed

A primary advantage of using a FAANN instead of a classical neural network
is its faster training speed. The simulations in this subsection demonstrate a
comparative analysis between the proposed FAANN and a traditional neural
network constructed using TensorFlow, an end-to-end open-source platform for
machine learning. All computations for ANN are executed on various hardware,
namely CPU, GPU, and TPU, all of which are run via Google Colab [36, 37].
Training and comparisons of the neural networks are made on identical datasets,
with configurations that most closely mimic the learning flow of FAANN as
described in this dissertation.

The constructed circuit contains blocks defined on a formula level that ex-
pected the result in hardware implementation to be slower. The most time-
intensive process in this concept is the charging of capacitors. Therefore, these
capacitors’ values are set close to the possible final hardware implementation.
That means all capacitors feature a capacitance of 0.1 pF, with a maximum
charged current of 100µA per capacitor. These values would be adjusted in
response to the specific implementation to ensure that parasitic properties do
not disrupt the charging process. Notably, the four-quadrant multiplier block in
this design is the most sensitive to parasitic properties, which can affect speed.
However, it can reach up to 40GHz in some implementations [91].

Four neural network structures are developed and presented in Table 5.5.
Each structure is realized in both analog and classical forms. The outcomes are
displayed in Table 5.6.

In FAANNs, the training time depends only on the size of the dataset and the
training time of one row of the dataset. In contrast, in a classical neural network,
the training duration is more due to the network structure, not exclusively by the
dataset size. Implementing online learning (also known as incremental learning
or sequential learning) provides only a single row from the dataset learned at
each stage [74]. This factor contributes to the slower computation speed on the
GPU, optimized for parallel computing, compared to the CPU [36]. As a point
of interest, the simulation training process duration of FAANN on a single i7
processor is for test 1 approximately 8 seconds, while for test 4, approximately
2 hours.

The results show that potential real-time speed is around several orders of
magnitude faster as compared to the known implementations.
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Test 1 Test 2 Test 3 Test 4
Size of dataset 2 10 100 500
Number of hidden layers 1 2 3 4
Number of neurons 3 5 16 21
Number of epochs 1000 1000 1000 1000

Table 5.5: Size of the dataset and structure of neural networks for speed com-
parison.

CPU GPU TPU FAANN
Test 1 2.017± 0.020 s 4.872± 0.264 s 2.017± 0.035 s 2 ns
Test 2 6.373± 0.097 s 13.599± 0.314 s 6.284± 0.190 s 10 ns
Test 3 54.678± 1.215 s 120.152± 1.034 s 53.910± 0.958 s 100 ns
Test 4 274.644± 2.281 s 624.357± 6.211 s 272.727± 2.159 s 500 ns

Table 5.6: Comparison of time spent on training neural networks in 2021.
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Chapter 6

Adaptive frequency filter

In this chapter, one of the many applications of FAANN that use its potential
is presented and explored. Specifically, the focus is on the adaptive frequency
filter [92, 93].

Filters are an essential building block for signal processing in almost every
modern electronic system. When used in environments where conditions change
over time or are simply poorly controlled, there is a need to change filter pa-
rameters to ensure proper system functionality. It is not only in these situations
that adaptive filters are an attractive option [42, 94, 95].

Adaptive filters are used in a large number of applications. For example,
for biological signals such as Photoplethysmography (PPG), Electromyography
(EMG), and Electroencephalography (EEG), especially in real-time adaption [42,
96, 97, 98]. Furthermore, they are also used for lower frequencies in acoustics,
including echo cancellation, noise control, array processing, and acoustic com-
munication filtering [99]. For higher frequencies, they are used, for example,
in antenna arrays, to improve the reception quality of multiple signals in radio
engineering systems [100].

Nowadays, most adaptive filters have been implemented using digital cir-
cuits [96, 98, 101, 102, 103]. These are often preferred due to their simplicity
and efficiency; however, they are primarily suited for lower-frequency applica-
tions. When it comes to adapting both digital and analog filter types, algorithms
such as Least Mean Squares (LMS) or Heuristic are predominantly used [94].
These adaptive algorithms inherently operate in digital form, resulting in com-
putational power limitations for digital processing at higher frequencies.

Specific implementations have been developed to address these challenges
using FPGA technology [102, 103]. Switched filters, such as switched capacitors
or filter-based adaptive fuzzy finite-time control for switched nonlinear systems,
are examples of technologies that filter analog signals. Despite their analog na-
ture, the adaptation mechanism in these filters is often executed by algorithms,
or their switching speed ultimately imposes limitations for high-frequency ap-
plications [104].
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All the adaptive filters mentioned above face limitations stemming from
factors such as sampling, ADCs, DACs, and the clock speed of computing ma-
chines. Furthermore, filters capable of operating at high frequencies do not
offer real-time adaptation, further limiting their applicability in dynamic situ-
ations. These issues can be particularly problematic in systems with restricted
computational resources for digital signal processing, such as satellite systems,
making them less adaptable to dynamic operational requirements [102]. In con-
trast, planar analog implementations of filters demonstrate greater consistency
at higher speeds and lower power consumption, presenting a compelling alter-
native [42, 94, 95, 105].

Due to the limitations of existing adaptive filters, this chapter introduces an
innovative concept of a fully analog adaptive filter based on a FAANN [52]. The
innovative aspect of this approach lies in its analog nature that does not use
any clock control, which enables both high-frequency operation and real-time
adaptation capability, thus overcoming the limitations of traditional adaptive
filter technologies [92]. In addition, the adaptive mechanism of this new concept
allows for the adaptation of a wide range of filter types, including high-order
filters, offering unprecedented versatility in the field of analog adaptive filter-
ing [93].

6.1 Proposed structure

In discrete-time filters, the fundamental element is the delay [94]. Neural net-
works apply the same element to process sequences or signals, such as RNN or
LSTM. However, an element acting as a signal delay suitable for these purposes
does not exist in analog circuits. Several solutions address this issue, such as
switching capacitors, but these are not fast enough for high-frequencies [104].

In the scope of this research, several attempts were made to construct analog
versions of recurrent neural networks for higher frequencies. Neurons in RNN are
characterized by having an additional input that accepts the previous output.
For instance, an integrator was used for the delay, or the signal was delayed
using a low-pass filter or a simple phase shift. The attempts included delaying
feedback on individual neurons as well as on entire networks. The outcomes
of these trials were unsatisfactory, as most of them either strongly diverged or
failed to learn within the required time range. The development of an analog
version of RNN and LSTM continues.

However, several alternative solutions were proposed for adaptive frequency
filters. This dissertation presents one of them based on a filter bank [98, 105].
In this concept, an input signal is fed into the filter bank. The outputs from
each filter bank are then supplied to the existing FAANN structure as inputs.
Figure 6.1 shows an example of such a circuit.
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This structure is trained in the same way as the FAANN, using the reference

signal Vtarget. This means that to train the filter it is unnecessary to apply the
frequency characteristics or the mathematical description. Having a reference
signal in the time domain is sufficient, and the frequency domain is learned from
this signal. That is one of the reasons why this concept expands the possibilities
and ease of use and makes it a solution for a wide range of applications.

fc1
=1MHz

Q=5

fc2
=1.21MHz

Q=5

fc24 =82.54MHz

Q=5

Vin

Vout

Vη

Vtarget

Filter bank FAANN

6 inputs

linear

25 inputs

linear

25 inputs

linear

25 inputs

linear

25 inputs

linear

25 inputs

linear

25 inputs

linear

Figure 6.1: The structure of a proposed simple generic, fully analog adaptive
filter for frequencies from 1 MHz to 100 MHz.

This structure can have multiple input and output signals depending on
the application. An example would be an antenna array where each input
is connected to a signal from one antenna, which can be routed directly or
through its filter bank, and the output is a signal processed by all antennas.
Alternatively, the output could consist of two separate signals.
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This concept of adaptive frequency filter structure introduces an entirely
new set of hyperparameters that need to be configured. It starts with the
already-known neural network structure used here as an adaptive mechanism.
It continues with the selection of the correct filter type, the number of filters,
their order, and frequency. These aspects are explored in the following sections.

6.2 faann-simulator for adaptive frequency fil-
ters

Section 5.1.1 elaborates on the structure and application of the faann-simulator
library, primarily for processing digital data. It provides the capacity to com-
pare it with traditional ANN. However, the primary objective of this library
is not this comparison but the simulation of FAANN structures, particularly
for analog signals. In the context of this research and future development, it is
anticipated that not only the network structures but also the signals, both input
and output, are subject to change. The goal, therefore, is to develop a library
capable of simulating all these changes while maintaining a user-friendly inter-
face. Moreover, it is designed to be simple and conducive to further research.
Therefore, this section details how this library can be applied to simulate analog
signals, especially for adaptive frequency filters.

The overarching goal of this chapter is to demonstrate that this adaptive
frequency filter concept can adjust to filters of higher frequencies and orders. It
should be noted that the faann-simulator employs ngspice, which can handle a
variety of analyses. However, given that the FAANN structure is highly nonlin-
ear, using Alternating Current (AC) analysis is not feasible, which would have
been beneficial for filters. Due to this limitation, all simulations conducted are
of the transient type. This section presents a comprehensive overview of the
process and the outcomes of these transient-type simulations.

6.2.1 Input filters

The faann-simulator library offers the ability to define filter banks for the input
signal, as depicted in Figure 5.1, within the input layer definition. Here, a
familiar coding approach is utilized, as shown in Code 6.2, where the third
style for structure definition using an array of objects is used when creating an
instance of the neural network.

For each input, it is possible to define a separate filter bank using an object
with the type input and the property outputs, representing an array containing
individual filters’ definitions. An example of such a structure is presented in
Code 6.1, which includes only one input signal directly connected to the network
and utilizes five additional RC low-pass filters. This network also consists of a
hidden layer with six neurons and an output layer with a single neuron.
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1 const faann = new FAANN({ ... config , structure: [
2 [{ type: "input", outputs: [
3 { filter:"no" },
4 { filter:"lowPass", capacity: 10, resistance: 15 },
5 { filter:"lowPass", capacity: 10, resistance: 159 },
6 { filter:"lowPass", capacity: 10, resistance: 1592 },
7 { filter:"lowPass", capacity: 10, resistance: 15920 },
8 { filter:"lowPass", capacity: 10, resistance: 159200 },
9 ] }],

10 { count: 6, activationFunction: "identity" },
11 { count: 1, activationFunction: "identity" },
12 ]});

Code 6.1: An example of filter definition in the FAANN input layer in the
faann-simulator library.

Code 6.2 illustrates different ways of defining filters, with each line repre-
senting a different approach. The first line states that the input signal is directly
connected to the network without filtering. The second line defines an RC low-
pass filter with a capacitance of 10 pF, and a resistance of 1592Ω for the input
signal. The third line defines an RC high-pass filter with the same parameters
as in the previous case. The fourth line introduces an RLC low-pass filter, where
the inductance is 22µH.

1 { filter: "no" }
2 { filter: "lowPass", capacity: 10, resistance: 1592 }
3 { filter: "highPass", capacity: 10, resistance: 1592 }
4 { filter: "lowPassRLC", resistance: 3000, inductance:

22000000 , capacity: 10 }
5 { filter: "laplace", s_xfer: "num_coeff =[3947841760435743.5]

den_coeff =[1 12566370.614359174 3947841760435743.5] int_ic
=[0 0]" }

6 { filter: "laplace", s_xfer: get2OrderFilter (10000000 , 5) }

Code 6.2: List filter definition types in the FAANN input layer in the faann-
simulator library.

Furthermore, ngspice allows the definition of elements using transfer func-
tions in the S-Domain Laplace format, using the s_xfer parameter [89]. The
fifth line in Code 6.2 demonstrates the definition of a second-order low-pass fil-
ter using a transfer function in Laplace format. The final line defines the same
filter as the previous case but utilizes the auxiliary function get2OrderFilter,
whose implementation is shown in Code 6.3.

Overall, the faann-simulator library provides a flexible and versatile ap-
proach for defining input filters, allowing researchers to adapt the simulation
to various filter configurations and explore different filtering techniques within
the FAANN framework.

57



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Adaptive frequency filter

1 function get2OrderFilter(fc: number , q: number) {
2 const om = 2 * Math.PI * fc;
3 return ‘num_coeff =[${om * om}] den_coeff =[1 ${om / q} ${om

* om}] int_ic =[0 0]‘;
4 }

Code 6.3: A function converts a second-order low-pass filter’s cutoff frequency
and quality factor to ngspice notation.

6.2.2 Analog training

Training analog neural networks constitutes a distinct discipline compared to
digital network training. This difference is apparent considering that all inputs
and outputs are analog and therefore are continuous in nature. Instead of using
a dataset, it necessitates a description of continuous signals.

To cater to this specific requirement, the faann-simulator library introduces
a definition of input voltage sources. Moreover, it is also necessary to define
a Vtarget. Here, the library provides a universal solution: users can define any
target circuit that accepts input signals and generates the target output voltage.
In this way, any circuit that FAANN attempts to learn can be defined. In the
case of this study, which focuses on the adaptive frequency filter, the reference
filter is defined by this target circuit. Figure 6.2 shows an example of a reference
filter connection.

Adaptive

Reference

Vin

Vout

Vη

Vtarget

filter

filter

Figure 6.2: Block diagrams used in adaptive filter learning simulations.

The faann-simulator library introduces two new methods enabling work with
analog signals. The first, trainAnalogue, allows for the training of analog
circuits. The second, predictAnalogue, facilitates predicting the analog output
of the target circuit while the target circuit is not present. Examples of the use
of these methods, along with a list of all parameters, can be found in Code 6.4.
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1 const analogueResult = await faann.trainAnalogue ({
2 testName: "adaptive -filter -example",
3 learningRate: 0.5,
4 trainingTime: 100000 ,
5 stepTime: 100,
6 inputSources: [
7 { type: "sin", amplitude: 0.5, periodTime: 10000 }
8 ],
9 targetCircuit: (inputs: string[], targets: string []) => ‘

10 R1 ${inputs [0]} ${targets [0]} 1592
11 C1 ${targets [0]} 0 10p
12 ‘,
13 // optional parameters
14 fourier: "10MEG",
15 saveDetail: false ,
16 plotNodes: ["v(in1)", "v(out1)", "v(target1)-v(out1)"],
17 verbose: 2,
18 });
19

20 const analogueResult = await aann.predictAnalogue ({
21 testName: "adaptive -filter -example",
22 durationTime: 1000,
23 startTime: 100000 ,
24 stepTime: 100,
25 inputSources: [
26 { type: "sin", amplitude: 0.5, periodTime: 10000 }
27 ],
28 });

Code 6.4: Demonstration of FAANN training and prediction using analog
signals with the faann-simulator library.

Both methods are asynchronous and return an object containing the simu-
lation results. The parameters for these methods are as follows:

testName Type: string. This parameter is used for test designation, which is
beneficial for subsequent result analysis.

learningRate Type: number [V]. This refers to the rate of change of weight
in response to error. It is the voltage supplied to Vη during the learning
process.

trainingTime Type: number [ps]. This refers to the total time of the training
process.

stepTime Type: number [ps]. This is the time interval between individual steps
of the simulation output.

startTime Type: number [ps]. This is only for the predictAnalogue method.
It refers to the time from which the output prediction begins. It is used
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to avoid simulating the entire circuit during the time when the circuit is
settling.

inputSources Type: InputSource. This is the definition of input sources. More
information can be found in Section 6.2.2.1.

targetCircuit Type: function. This is the definition of the target circuit.
More information can be found in Section 6.2.2.2.

fourier Optional. Type: string [Hz]. If filled in, the library adds the .fourier
command to the netlist, which allows the acquisition of both the circuit’s
frequency characteristics and Total Harmonic Distortion (THD) analysis
from the already performed transient analysis. The value is the funda-
mental frequency of the Fourier transformation.

plotNodes Optional. Type: string[]. If filled in, the specified voltage nodes will
be plotted from the simulation results using the native ngspice library.

saveDetail Optional. Type: boolean. Default: false. This saves the progress
of the voltage during the training. These data are storage-intensive, so it
is recommended to save them only when a close observation of training
progress is required.

showProgress Optional. Type: 0 | 1 | 2. Default: 2. This parameter de-
termines the level of progress information displayed during the training
process. The value 0 displays nothing, 1 displays a progress bar, and 2
displays initial statistics along with a progress bar.

This approach opens up the vast potential of using the faann-simulator li-
brary in diverse applications that deal with analog signals.

6.2.2.1 Input sources

In the faann-simulator library, input signals can be defined as voltage sources
in three ways, all illustrated in the code examples provided in Code 6.5.

1 { type: "rectangular", v0: -1, v1: 1, periodTime: 100,
transitionTime: 1 }

2 { type: "sin", amplitude: 1, periodTime: 100 }
3 { type: "random", distribution: "Uniform", durationTime: 10,

params: [] }

Code 6.5: List of input source definition types for training with the faann-
simulator library.

The first way to define an input signal is as a square wave signal, which
fluctuates between two voltage states, V0 and V1, over a defined period referred
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to as periodTime. The second way involves defining the input signal as a simple
sinusoidal wave.

The third way to define an input signal is as a random signal generated from
a statistical distribution. Possible states for this distribution are "Uniform",
"Gaussian", "Exponential", or "Poisson". Each type of distribution will gener-
ate a distinct set of signals, thus allowing a wide variety of signal behaviors to
be modeled [89].

6.2.2.2 Designating a target circuit

The targetCircuit parameter is a function that takes two parameters inputs
and targets and returns NetList.

The inputs parameter refers to an array of input nodes, while targets is
an array of target nodes. This function provides a versatile framework where
the user can define any circuit that the subsequently designed adaptive filter
will attempt to learn and emulate.

An example of defining a target circuit is shown in Code 6.6. This example
demonstrates how to establish a transfer function for a fourth-order Chebyshev
low-pass filter with a cut-off frequency of 100MHz. Unless otherwise noted, this
target circuit is used as the reference filter in the simulations in this chapter.

1 targetCircuit: (inputs: string[], targets: string []) => ‘
2 A1 ${inputs [0]} ${targets [0]} chebfilter
3 .model chebfilter s_xfer(num_coeff =[2.511957e+30] den_coeff =[1

53880210 4649291000000000 1.342868e+23 2.818462e+30]
int_ic =[0 0 0 0])

4 ‘,

Code 6.6: An example of a target circuit defined as a transfer function for a
fourth-order low-pass Chebyshev filter with a faann-simulator library.

6.2.3 Adaptive frequency filter training

The sizes of simulated neural networks and filter banks can be quite large and,
more importantly, variable, especially in the conceptual phase of development.
Creating these structures and reading frequency characteristics from transient
analyses in faann-simulator would be very challenging. Therefore, the program
is updated as shown in the flowchart in Figure 6.3. Here it is essential to
mention that in the learning phase of the adaptive filter, a source with a random
waveform close to white noise is used as the input signal. This ensures all
frequencies are represented in the input at a similar rate during learning. The
target signal is then obtained using the reference filter according to Figure 6.2.
In the measurement phase, Vη is then set to 0, and a sinusoidal source of the
particular frequency is used as the input signal.
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Figure 6.3: Algorithm flow diagram for the simulation of a fully analog adaptive
filter.
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6.3 Validation of the adaptive filter concept

This section intends to verify the developed concept of analog frequency adap-
tive filters, mirroring the FAANN validation process by simulations. Initially,
the focus is on affirming the principles of adaption and filtration within the
time domain. This primary step has proved crucial in fine-tuning the proper
functioning and simulation of the proposed filter. The examination also delves
into how the FAANN is capable of processing signals from various types of fil-
ters. Furthermore, the appropriate neuronal network structures for this task
and their parameters are explored. Finally, the ability of the filter to adapt to
higher-order filter types is verified. This thorough analysis substantiates the
proposed concept’s effectiveness and resilience, underscoring its potential for
practical application.

6.3.1 Learning progression over time

In adaptive filter simulations, the FAANN’s learning is done through a teacher-
assisted learning principle that utilizes analog feedback based on backpropaga-
tion. The desired output from the neural network after adaptation is that the
learning signal is fed into Vtarget. All the learned attributes, including filtering
of specific frequencies or phase shifts, are unknown to this filter, and these fea-
tures are learned solely from the time domain waveform. It enables adaptation
to a filter with an unknown transfer function simply by feeding a weighted signal
waveform into Vtarget.

In this phase of validation, a positive voltage is applied to Vη, resulting
in the weights within the neural network changing by the voltage differences
between Vout and Vtarget, as represented in Equation (4.8). To safeguard the
learning process from potential influence by the chosen input signal and to enable
the filter to learn at the desired frequencies, the input signal Vin is selected
as random noise, believed to contain all frequencies at the same rate. The
generation of this noise through a voltage source is made possible by ngspice,
as indicated in the netlist entry shown in Code 6.7.

1 Vin1 in1 0 dc 0 trrandom (1 10n)

Code 6.7: NetList notation for random noise as a voltage source for ngspice.

The voltage outputs are visualized in Figure 6.4 and subsequently after 98µs
in Figure 6.5, where Vout and the reference Vtarget are displayed using transient
analysis. This visual analysis shows that the filter’s adaptation process is al-
ready underway within the 1µs. By the conclusion of the 100µs learning time,
as displayed in Figure 6.5, the difference between Vout and Vtarget has been min-
imized. This remarkably rapid adaptation within a short span further under-
scores the effectiveness of the proposed concept, suggesting its strong potential
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for real-time applications.
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Figure 6.4: Demonstration of the beginning of continuous real-time FAANN
filter learning using transient analysis with the input signal Vin as random noise.
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Figure 6.5: Demonstration of continuous real-time FAANN filter learning after
98µs using transient analysis with the input signal Vin as random noise.
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6.3.2 Frequency characteristics

For a first verification that the proposed adaptive filter can also adapt to the
frequency response over the time domain, only first-order filters as reference
filters are simulated in this subsection. Additionally, the filter bank contains
the same filter as the reference, among others.

First, a low-pass reference filter with cutoff frequency fc = 10MHz is tested.
The filter bank contains five different filters. The first filter passes the input
signal, and the others are the low-pass filters with cutoff frequencies of 100 kHz,
1 MHz, 10 MHz, 100MHz and 1 GHz. After a training time of 100µs, the re-
sulting frequency response is shown in Figure 6.6.
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Figure 6.6: Comparison of the amplitude characteristics of the adapted filter
and the reference low-pass filter for ten different learning processes.

Since the learning process occurs in the time domain, verifying that adap-
tation occurs similarly for low and high frequencies is necessary. For this rea-
son, the same test is performed with the high-pass filter with cutoff frequency
fc = 10MHz. The filter bank contains the same configuration but now with
high-pass filters. After a training time of 100µs, the resulting frequency response
is shown in Figure 6.7.

All types of simulations were run ten times with different initial excursions
in FAANN. All twenty simulations performed show that the proposed adaptive
filter can indeed adapt to the frequency domain, even for both upper and lower
passbands.

6.3.3 Filter error measurement

One of the most exciting features of all adaptive algorithms is their learning
process in learning epochs, or in this case, in real-time. For this purpose, at each
stage of the frequency characteristic measurement, the error from the reference
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Figure 6.7: Comparison of the amplitude characteristics of the adapted filter
and the reference high-pass filter for ten different learning processes.

amplitude is measured at each frequency separately, and the MSE of frequency
amplitudes is calculated from them according to

MSE =
1

n

n∑
i=1

(
V i
outpp

2
−

V i
targetpp

2

)2

, (6.1)

where n is the number of measured frequency and Voutpp and Vtargetpp are the
change between highest value and lowest value in nodes. However, this cal-
culation is only possible under the assumption of a minimum output signal
distortion; this is addressed in Section 6.3.4. The new simulation of learning
simulations like in Figure 6.4 were run only for 10µs. After this learning process,
Voutpp and Vtargetpp were measured for each frequency separately. The learning
simulations are run after that for the next 10µs, and the output voltages are
repetitively measured. This process repeats until 100µs. The results are plot-
ted in Figure 6.8 to show how well the filter is learned as a function of time.
The graph shows the results for ten filters learned from scratch with the same
reference filter.

6.3.4 Total harmonic distortion

A frequency filter is a linear system, while a neural network, being a highly
nonlinear system, therefore exhibits considerable potential for distortion. THD
must be evaluated and eliminated for this reason. The degree of distortion de-
pends on factors such as the activation functions employed in the neural network
and the level of adaptation that can be achieved to minimize the distortion.

The learned adaptive filter to a first-order low-pass filter is selected for sim-
plicity. Subsequently, 0V is applied to Vη, and frequencies from 100 kHz to
1 GHz are incrementally introduced to the input Vin. For each frequency, a
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Figure 6.8: The learning curve for an adaptive frequency filter using MSE for
frequency filter error.

transient analysis is conducted with THD measurement for the frequency under
examination. The THD is calculated directly in ngspice using Fourier analysis,
as shown in the NetList in Code 6.8, of the transient analysis output where the
result includes the THD value [89].

1 fourier 10MEG v(out1)

Code 6.8: NetList notation for Fourier analysis with THD output for ngspice.

The outcome of such THD analysis for each frequency independently is dis-
played in Figure 6.9. The graph presents the results for ten filters, each trained
from scratch with the same low-pass reference filter with a cutoff frequency of
10 MHz. The simulations reveal that for filters that have already been trained
for only 100µs, the THD remains below 5 % for all frequencies. Notably, a
marginally lower distortion is observable for lower frequencies.

When utilizing a neural network for adaptive filtering, it is crucial to select
appropriate parameters, one of which is the choice of the activation function.
Thus far, the FAANN has been implemented with three activation functions:
"linear", "tanh", and "sigmoid". Consequently, three distinct neural networks
have been created, each featuring a different activation function in their hidden
layers. Because of the significant difference in THD between the functions, the
subsequent simulation used a complex reference filter whose frequency response
is shown in Figure 6.18.

The THD is calculated from each measured frequency and depicted in the
graph shown in Figure 6.10. Five adaptations are performed for each neural
network, starting with different random weights. The graph reveals that, in
terms of signal distortion, the linear activation function is the most suitable for
filtering applications.

67



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Adaptive frequency filter

105 106 107 108 109
0

1

2

Frequency [Hz]

T
H

D
[%

]
THD1−10

Figure 6.9: Signal distortion of the learned first-order low-pass filter for ten
different learning processes.
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Figure 6.10: Measured THD of the adapted filter with different activation
functions.

Subsequent simulations demonstrated that the THD with the linear activa-
tion function rapidly falls below 5% for the pass-band frequencies of the tested
filters. The THD continues to decrease as the learning process progresses.

6.4 Exploration of adaptive properties

In the preceding section, it was demonstrated that the proposed adaptive fre-
quency filter is capable of adaptation. This section investigates the boundaries
of this adaptive filter and its properties. The impacts of setting various hyper-
parameters on the overall adaptation quality are explored through simulations.
As part of this investigation, different parameters will be systematically chosen
to construct a generic adaptive filter capable of universal adaptation from 1MHz
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to 100MHz. These parameters will be adjusted in a manner that will allow for
observation of the effects on the ultimate quality of adaptation in subsequent
simulations.

6.4.1 Dependence on Filter bank

The filter bank is the initial part of the investigation into the adaptive filter. An
examination will be conducted to ascertain how the final quality of adaptation
is influenced by the types of filters, the number of filters, their order, and their
inaccuracies within the bank. Due to the non-linear propagation of signals in
neural networks, it is hypothesized that the effects of filters in the bank could
be intensified or possibly transformed. Simulations and analyses are carried out
to substantiate these hypotheses. Understanding the dependency of adaptation
quality on these filter bank parameters is vital for comprehending the behavior
of the adaptive frequency filter. It lays the foundation for its optimization in
diverse application settings.

6.4.1.1 Filter type

The first test demonstrates the dependence of the direction of the bank pass
relative to the reference. The filter bank in this simulation is the same as in the
low-pass simulation above; that is, one without filtering and then five low-pass
filters with different cutoff frequencies of 100 kHz, 1 MHz, 10 MHz, 100MHz and
1 GHz. However, the reference filter is set as a first-order high-pass filter with
a cutoff frequency of fc = 10MHz. The result of this simulation is shown in
Figure 6.11.

105 106 107 108 109

−40

−30

−20

−10

0

Frequency [Hz]

M
ag

ni
tu

de
[d

B
]

Vtarget

Vout1−10

Figure 6.11: Comparison of the amplitude characteristics of the adapted filter
as a high-pass filter with only low-pass filters in a filter bank for ten different
learning processes.
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The graph shows that this adaptive filter can learn high-pass behavior even
if only a low-pass filter exists in the filter bank. Other simulations not presented
here have shown that the same process works with inverted passbands. Another
positive feature is that, after learning the filters constructed this way, the THD
is still below 5 % for all measured frequencies. When creating a filter bank, it
is possible to use only one type of filter that fits the application.

6.4.1.2 Cutoff frequencies

The next test determines whether the adaptive filter can adapt the cutoff fre-
quencies of the filters in the bank. For this purpose, the reference filter is set to
a first-order low-pass filter with a cutoff frequency of fc = 10MHz. However,
the filter bank is reduced to only three filters. The first filter passes the input
signal, and the others are low-pass filters with cutoff frequencies of 1MHz and
100MHz. The frequency response of this simulation can be seen in Figure 6.12.
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Figure 6.12: Comparison of the amplitude characteristics of the adapted filter
(fc = 100MHz) with a not fitting filter in the bank (1 MHz and 100 MHz) for
ten different learning processes.

Naturally, the next question is how this concept behaves with a bank of
filters set entirely out of range. For this situation, the cutoff frequency of the
reference filter is set to fc = 100MHz. The filter bank is again reduced to three
filters. The first filter passes the input signal, and the others have their cutoff
frequency set to 1MHz and 10MHz. After 100µs of learning, the frequency
characteristics are shown in Figure 6.13.

The results of both these tests show that if the filter bank is inconsistent
with the reference, the concept cannot fully adapt. However, even so, the filter
tends to achieve the best possible fit in both the time and frequency domains.
Thus, if the filter bank contains a sufficient number of filters in the specified
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Figure 6.13: Comparison of the amplitude characteristics of the adapted filter
(fc = 100MHz) with filters in the bank out of range (1 MHz and 10 MHz) for
ten different learning processes.

range, the adaptive filter can come as close as possible to any needed filter.

6.4.1.3 High-order filters

Another fascinating feature of the adaptive filter, which is being investigated
here, is its ability to adapt to high-order filters. The assumption that this
concept could adapt to high-order filters if similar-order filters are present in
the bank would not come as a surprise. However, as indicated in Section 6.4.1.1,
thanks to FAANN, this concept can generate filters of one type from filters of
another type. Here arises a possibility that the adaptive filter can also adapt to
higher-order filters, exceeding those present in the filter bank.

However, it remains to be seen if the lower-order filters in the bank can
generate a high-order filter. To investigate this, first-order and second-order
filters with varying Quality factor (Q) are chosen for simulations, the results
of which are shown in Figure 6.14. From the figure, it can be seen that the
first-order filter and filters with Q ≤ 0.5 are unable to adapt to the higher-order
filter. In contrast, 2nd order filters with Q > 0.5 possess this capability.

Figure 6.14 also shows that when Q is small, the amplitude’s rate of decline
in the frequency domain is more gradual. Conversely, if Q is too high, the rapid
decreasing tendency prevents a flat pattern in the pass-band region, which may
be mitigated through various measures, such as adjusting the number of filters
in the bank. These findings emphasize the importance of carefully selecting filter
parameters to optimize the filter’s performance and adaptability of adaption.
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Figure 6.14: Frequency characteristics of adapted filters with different filter
types in the bank. Filters with defined Q are 2nd order.

6.4.1.4 Number of filters in the bank

Another critical parameter is the number of filters in the bank itself. Thus,
banks of varying numbers of second-order filters with Q = 5 are created so that
they are logarithmically uniformly distributed between 1 MHz and 100 MHz.
The results of these simulations are shown in Figure 6.15. Again, the results
show that if there are fewer filters, it is more challenging to adapt between the
cutoff frequencies of the filters in the bank. Conversely, the more filters there
are in the bank, the more likely and easier it is for the filter to adapt.

A filter bank containing second-order filters with Q = 5 will be used in all
other simulations in this chapter. The number of these filters will be 24 to show
the shortcomings caused by an insufficient filter bank. The cutoff frequencies
of these filters are: 1 MHz, 1.21MHz, 1.47 MHz, 1.78 MHz, 2.15MHz, 2.61 MHz,
3.16 MHz, 3.83 MHz, 4.64 MHz, 5.62 MHz, 6.81 MHz, 8.25 MHz, 10 MHz, 12.12MHz,
14.68 MHz, 17.78 MHz, 21.54 MHz, 26.1 MHz, 31.62 MHz, 38.31 MHz, 46.42 MHz,
56.23 MHz, 68.13MHz and 82.54 MHz.

6.4.1.5 Adaptation sensitivity to filter inaccuracies

As has been demonstrated, one of the significant drawbacks of filter banks is
that they should contain a larger number of filters and, secondly, that the filters
they contain should be very accurate. This second drawback can be mitigated
with the described adaptive filter concept because the adaption does not assume
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Figure 6.15: Frequency characteristics of adapted filters with a different num-
ber of filters in the bank.

specific filter values but uses what is available. In the following simulations, each
filter bank is set with random variation of filter parameters, namely Q± 20% and
cutoff frequency fc ± 10%. The resulting frequency waveforms in Figure 6.16
show that even with such parameter variance, the result is not much worse. It
allows the filter bank to assemble itself from higher tolerance components and
thus simplify the manufacturing process.

6.4.2 Dependence on neural network structure

Another integral aspect of the proposed adaptive filter to explore is the struc-
ture of the FAANN and its influence on adaptation outcomes. This subsection
presents the filter adaptation with various neural network structures and their
corresponding effects on the results of adaptation.

Initially, a simulation is carried out with a neural network consisting of only
one output neuron, the outcomes of which are illustrated in Figure 6.17 at the
top of the figure. Subsequently, structures with one and two hidden layers are
established, each layer containing 3, 6, or 12 neurons. Once more, for each
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Figure 6.16: Comparison of frequency characteristics of adapted filters with
precisely defined filters in the bank versus filters with deviations fc ± 10% and
Q± 20% in the bank.

structure, five adaptation processes are carried out.
In order to be able to compare the changes in the adaptive filter attributes,

a reference 4th-order Chebyshev filter with a cutoff frequency of 10MHz is used
throughout the chapter unless otherwise noted.

From the frequency characteristics in Figure 6.17 at the top, it can be seen
that one neuron already handles the adaption in a decent way. A better choice
of other neural network parameters or more extended learning could solve the
visible minor attenuation in the pass-band part of the filter. The graph in
Figure 6.17 shows that the smaller neural network structure performs better
with the current adaptive filter training parameters. One of these parameters
is the learning length, set to 100µs for all simulations in this paper, to allow
comparison of the other parameters. However, tests that are not included in
this work show that larger neural network structures have a greater potential
to adapt to the desired reference filter but require a longer learning time.

For the purpose of this chapter, a structure with one hidden layer of six
neurons with linear activation functions was chosen, which is used in all other
simulations in this chapter.
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Figure 6.17: Frequency characteristics of adapted filters for different FAANN
structures.
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6.5 Adaption efficiency

In this chapter, a simpler general adaption filter was developed for adaption
in the range of 1MHz to 100 MHz using a filter bank containing 24 second-
order filters with Q = 5, six hidden layer neurons and one output neuron.
One particular filter was designed and subjected to the adaption test for low-
pass and high-pass 4th-order Chebyshev-type filters with cutoff frequencies of
3 MHz, 7 MHz, 15 MHz, and 40 MHz. Subsequently, the 8th order Chebychev-
type band-pass and band-stop signals were also tested with a range of 2.5 MHz
- 5.5 MHz, 6 MHz - 9 MHz, 13 MHz - 21 MHz, and 32MHz - 56MHz.

Each of these adaptions was run five times with different initial weights.
These simulations’ results can be seen in Figure 6.19 and Figure 6.20. At the
same time, all adaption runs lasted only 100µs of simulated time. Despite this
short learning time, the results are very promising.

6.5.1 Load test

The last simulation in this dissertation is a load test of this adaptive filter.
For this purpose, a dual band-pass filter used, for example, in Very high-speed
Digital Subscriber Line (VDSL) modems, was chosen [106]. The attempt to
adapt to this more complex filter can be seen as red lines in Figure 6.18. The
THD of the filter learned in this way can also be seen as red lines in Figure 6.10.
The plot shows that an adaption filter set up in this way is unsuitable for such
a challenging task. However, just a tiny change in the filter bank to 48 second-
order filters and the result can be seen in the same Figure 6.18 as the green
line.
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Figure 6.18: Frequency characteristics of the adapted filter to dual band-pass
filter.
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Chapter 7

Conclusion

This dissertation primarily focuses on the development of a Fully Analog Ar-
tificial Neural Network (FAANN) designed to process signals directly from an
extensive array of electronic sensors. Signal processing aims to enhance measure-
ment precision while considering concept drift and the possibility of providing
not directly measured properties of the signal system.

Nowadays, neural networks are popular and are used for a wide range of
applications in different fields. Therefore, various neural network computation
accelerators are currently being developed. Increasingly, these accelerators are
being implemented in analog form, mainly for computation parallelization and
power consumption. It is also true for implementing neural network learning
processes, which currently often face problems associated with sampling, ADC,
DACs, synchronization signals, and clock control when working real-time. These
factors together make real-time learning a significant challenge for high-speed
systems.

Based on the analysis, a new concept of FAANN was proposed. The main
innovation is the fully analog learning process derived from the backpropaga-
tion algorithm using gradient descent. This strategy addresses the problems
of analog implementation and effectively circumvents the von Neumann bottle-
neck, and allows real-time learning. At the same time, the concept is carefully
formulated to exclude synchronization signals, thereby becoming fully analog
and, therefore, fully parallel. It offers significant improvements in signal pro-
cessing speed and anticipated energy consumption, demonstrating the immense
potential for applications such as Internet of Things (IoT) and high-speed ap-
plications, image processing, and high-frequency signal control.

The subsequent four sections of this paper discuss the contributions of this
work, with each section dedicated to a specific objective of this dissertation.
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7.1 The new design

Chapter 4 is devoted to the design of a new fully analog neural network concept
where the emphasis is on avoiding the von Neumann bottleneck and not utilizing
any synchronization signals or any clock control. This approach enabled a fully
analog and, thus, fully parallel computational design for neural networks to be
developed, which is a crucial feature of this system.

The design’s most significant innovation lies in transposing the weight learn-
ing process into the analog world inspired by the backpropagation algorithm
founded on the gradient descent method. This transposition was achieved
through the process of charging capacitors with current. Unlike traditional
methods that employ discrete steps, the approach allows for the continuous
charging of capacitors, thus enabling weight changes.

This concept is mathematically developed to intermediate results, which
serve as the foundation for implementation using well-known electronic blocks.

The result is an analog neuron that not only processes signals but also con-
tains learning circuits. It makes connecting several such neurons into various
types of neural networks possible, enabling diverse applications.

As part of the design, a demonstration is also prepared on how these neu-
rons can be integrated into a Feedforward Neural Network (FNN) with hidden
layers and an implemented Mean Squared Error (MSE) analog function as a
loss function.

7.2 Functionality validation

Chapter 5 is dedicated to validating and exploring the proposed concept. It
utilizes established graphical electrical circuit simulators GEEC and a specially
designed faann-simulator library for analog neural networks. This library uses
ngspice as a core for calculations and simulations.

Thanks to the electrical behavior simulation models in Section 5.3.4, it is
demonstrated that the proposed design possesses the ability to learn. The well-
known XOR problem was used to validate this learning process. This problem
is recognized in machine learning due to its non-linear separability and serves as
an excellent metric for assessing a model’s ability to solve problems and adapt.

Simulations also show that the new design is partially resilient to the par-
asitic properties of the used blocks. Compared with classical neural networks,
designed neural networks demonstrate similarity in behavior. It is a very pos-
itive result, suggesting that this neural network could be deployed similarly to
the traditional artificial neural networks, thereby lowering the barrier to their
acceptance within the data science community.

Section 5.4.2 gives the learning speed comparison results, showing that the
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designed concept could offer an order-of-magnitude acceleration compared to
classic ANNs. It suggests the possibility of deploying the design in real-time,
even for large networks, which is a promising prospect.

7.3 Adaptive frequency filter

Chapter 6 is devoted to the practical application of FAANN, showing its full
potential through implementing a fully analog adaptive frequency filter. How-
ever, it is important to underline that this specific example represents only one
of the many possible applications that could effectively employ FAANN.

The adaptive frequency filter is designed to facilitate adaptation at high fre-
quencies, for higher orders, and various filter types, all in real-time adaptation.
A pivotal element of this design is the filter bank, which is directly connected
to the neural network’s input layer. Thanks to this configuration, the proposed
neural network takes care of the adaptation or, more accurately, the learning
process.

The learning of such a proposed adaptive frequency filter consists of learning
in the time domain. It implies that the training of the filter does not require the
use of frequency characteristics or complex mathematical descriptions. Instead,
only a reference signal is needed for the filter to learn, from which the frequency
domain gains knowledge. This concept opens up new possibilities, simplifies
usage, and makes the adaptive frequency filter a universal solution for a wide
range of applications.

Figure 6.1 shows one of the possible configurations of the adaptive frequency
filter used in all simulations mentioned in the following section.

7.4 Adaptive filter properties exploration

Simulations in Section 6.3 have verified the basic functionality of this concept.
It is shown that the adaptive filter converges to the reference filter depending on
the filter bank and other hyperparameters. At the same time, in the presented
simulations, the nonlinearities decrease to units of % THD during adaptation.

In Section 6.4, the properties of the most critical parameters of the neural
network used, as well as the filter banks, are described through simulations:

Neural network activation function. For frequency filtering purposes, lin-
ear activation functions are most suitable. It is mainly due to the smaller
output signal distortion, as shown in Figure 6.10.

Neural network structure. Figure 6.17 shows that simpler structures can
adapt more efficiently in the same learning time. On the other hand,
larger structures can adapt better after a longer learning time.
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Filter type dependence. As demonstrated in Section 6.4.1.1, due to the non-
linearity of the neural network, it is possible to adapt to the high-pass filter
with the low-pass filters. Simulations in Figures 6.19 and 6.20 demon-
strated that only low-pass filters in the bank are necessary to adapt to
filters types such as low-pass, high-pass, band-passes, and stop-bands.

High-order adaptive filters. Section 6.4.1.3 explores the possibilities of
adapting to a higher-order frequency filter. The simulations plotted in
Figure 6.14 show that the proposed adaptive frequency filter is able to
adapt to higher-order filters required to use at least second-order filters
with quality factor Q > 0.5 in the bank.

Number of filters in the bank. Figure 6.15 shows that the adaptive filter
learns more effectively with a higher number of filters in the bank. Twenty-
four filters seem to be adequate for an adaptation frequency range of two
decades.

Based on the mentioned findings, a simple general adaptive filter is proposed
to adapt the frequency band from 1 MHz to 100MHz. This filter consists of
only six neurons in one hidden layer, one output neuron, and 24 filters, which
consist of only second-order low-pass filters in the bank. All simulations with
this simple adaptive filter configuration have shown that it can be adapted in
100µs to various Chebyshev’s 4th-order low-pass and high-pass and 8th-order
band-passes and stop-bands as is seen in Figures 6.19 and 6.20. The same filter
is tested to adapt to the more complex dual-band filter in common use, and the
result is satisfactory when the number of filters in the bank is increased to 48,
as shown in Figure 6.18.

7.5 Summary

In this research, a new concept of fully analog artificial neural networks for sig-
nal processing is successfully designed with learning capabilities that do not rely
on any clock or synchronization signal. The functionality of this system is ver-
ified, and it exhibited similar behavior to traditional artificial neural networks.
Based on this concept, an adaptive frequency filter is constructed, demonstrat-
ing excellent characteristics. It shows the potential of this technology to address
the challenges of neural networks for real-time learning and processing signals
directly from sensors.
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